KOGANEI

Air Cylinder

ROTARY ACTUATORS VANE TYPE RAG Series INSTRUCTION MANUAL Ver.1.0

Handling Instructions and Precautions

General precautions

Media

- Use air for the media. For the use of any other media, consult us.
- 2. Air used for the rotary actuator should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum 40 µm) near the rotary actuator or valve to remove collected liquid or dust. In addition, drain the air filter periodically.

Piping

- 1. In piping connection with the rotary actuators, flush the tube completely (by blowing compressed air) before piping. Intrusion of machining chips, sealing tape, rust, etc., generated during plumbing could result in air leaks and other defective operations.
- 2. When screwing in piping or fittings to the actuator, tighten to the appropriate tightening torque shown below.

Connecting thread	Tightening torque N·cm [in·lbf]
M5×0.8	157 [13.9]

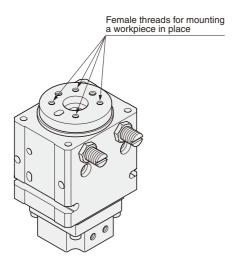
Lubrication

The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or equivalent. Avoid using spindle oil or machine oil.

Atmosphere

When using in locations subject to dripping water, dripping oil, etc., use a cover to protect the unit.

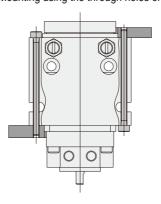
Start-up


When starting up operations of a device and the rotary actuator by supplying compressed air rapidly, it could not control the speed due to the construction of the rotary actuator, resulting in damage to the device and rotary actuator. When supplying compressed air to the device and rotary actuator where the air has been exhausted, always ensure that the table is in a secure position and cannot be moved further, paying attention to safety, and then apply air pressure from the connection port of not making move the table, first. For the piping port location and swing direction, see p.1320.

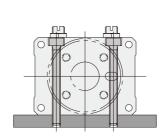
Mounting

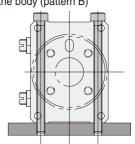
Mounting

- **1.** The mounting surface should be always flat. Twisting or bending during the mounting could result in air leaks or improper operation.
- **2.** Care should be taken that scratches or dents on the rotary actuator's mounting surface may damage its flatness.
- **3.** Take some locking measures when shocks or vibrations might loosen the bolts.
- 4. For a workpiece mounting, female threads are available for installing the workpiece in place on the table. Always use bolts so that the screw length is less than the depth of the female thread. When mounting the workpiece, tighten the bolts within the range of the tightening torque.
- 5. Do not let machining chips or dust enter the product through mounting threads in the table-top surface. Machining chips or dust adhering to the internal bearings could lead to defective operation.



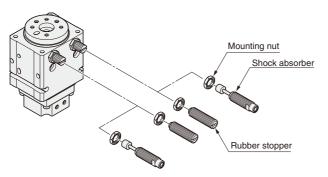
Model	Thread size	Thread depth L mm [in.]	Max. tightening torque N·m [ft·lbf]
RAG□1 RAG□3	M4×0.7	6 [0.236]	2.7 [2.0]
RAG□8 RAG□20	M5×0.8	8 [0.315]	5.4 [4.0]


Caution: When using bolts to mount a workpiece in place on the table, hold either the table or workpiece in place during the operation. Holding the body for tightening will apply excessive moment to the stopper, rubber stopper, and shock absorber, resulting in a change of angle.


6. The rotary actuator RAG series can be mounted in either of the ways shown below. When mounting, ensure that the tightening torque is within the range of allowable torque.

Mounting using the through holes on the body (pattern A)

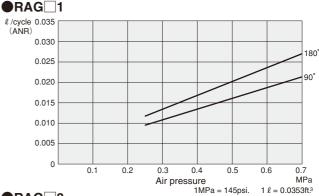
Mounting using the through holes on the body (pattern B)

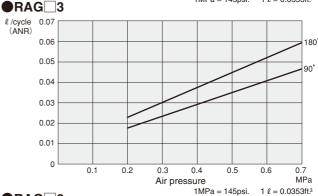

Mounting using the tapped holes on the body

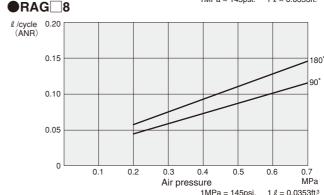
Model	Mounting method	Thread size	Maximum tightening torque N·m [ft·lbf]
DAC -4	Through hole (pattern A)	M3×0.5	1.14 [0.84]
RAG⊡1 RAG⊡3	Through hole (pattern B)	M4×0.7	2.7 [2.0]
HAG∐3	Main body tapped hole	M4×0.7	1.5 [1.1]
	Through hole (pattern A)	M4×0.7	1.5 [1.1]
RAG⊡8	Through hole (pattern B)	M5×0.8	5.4 [4.0]
	Main body tapped hole	M5×0.8	3.0 [2.2]
	Through hole (pattern A)	M5×0.8	5.4 [4.0]
RAG⊡20	Through hole (pattern B)	M6×1.0	9.2 [6.8]
	Main body tapped hole	M6×1.0	5.2 [3.8]

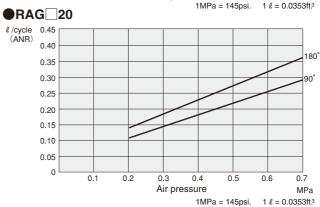
Rubber stopper and shock absorber replacement instructions

- 1. When replacing the rubber stopper or shock absorber, refer to the Swing Angle Range and Swing Direction on p.1320 to perform mounting. If the stopper under the table is not in the correct position, it could result in incorrect swing angle or damage. Moreover, never use the rotary actuator with the rubber stopper or shock absorber removed. As noted above, it could lead to incorrect swing angle and will be unable to absorb kinetic energy, resulting in damage to the rotary actuator.
- 2. Loosen and remove the mounting nut of the rubber stopper or shock absorber. Screw the new rubber stopper or shock absorber into the proper position, and then tighten the mounting nut and secure it in place. When tightening the nut, ensure that the tightening torque is within the range of setting values.




Swing angle adjustment


- 1. The rotary actuators RAG series uses rubber stoppers or shock absorbers for angle adjustment, in the ranges shown on p.1320. For both clockwise and counterclockwise rotation, rotating the rubber stopper or shock absorber to the right (clockwise) will reduce the swing angle. After completing angle adjustment, tighten the nut and secure the rubber stopper or shock absorber in place.
- 2. Always keep the swing angle within the specified range for use. For the shock absorber, in particular, when the angle between the applied load direction and the center line of the shock absorber exceeds the allowable angle variation, the product could be damaged.
- **3.** The rubber stoppers or shock absorbers are only temporarily tightened at shipping. For actual use, always tighten the nuts to secure the rubber stoppers or shock absorbers in place.
- **4.** When tightening the nut, ensure that the tightening torque is within the range shown below.


Model	Nut size	Maximum tightening torque N·m [ft·lbf]	
RAG⊡1	M6×0.75	0.85 [0.63]	
RAG□3	M8×0.75	2.45 [1.81]	
RAG⊡8	WI6∧U.75	2.45[1.61]	
RAG□20	M10×1.0	6.37 [4.70]	

Air Consumption

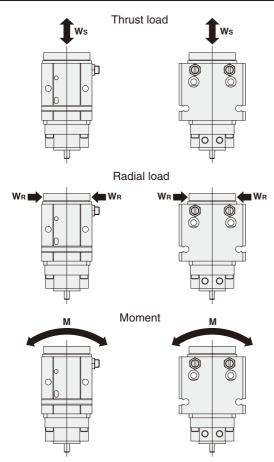
Air consumption per 1 cycle of the rotary actuator can be found by the following equation.

$$Q=2\times V\times 10^{-3}\times \frac{P+0.1013}{0.1013}$$

Q : Air consumption per cycle $[\ell/cycle(ANR)]$

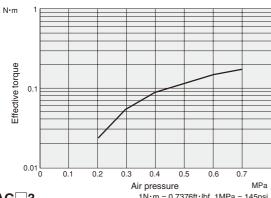
V: Internal volume (cm³)

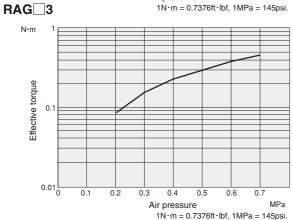
P: Air pressure (MPa)


1 \(\ell = 0.0353 \) ft.3, 1cm3=0.061 in.3, 1MPa=145psi.

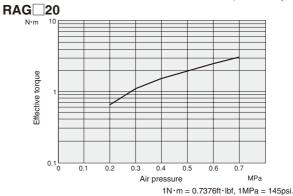
		cm³ [in.³]
Model	Internal	volume
iviodei	90°	180°
RAG⊡1	1.4 [0.085]	1.7 [0.104]
RAG□3	3.0 [0.183]	3.8 [0.232]
RAG□8	7.4 [0.451]	9.2 [0.561]
RAG□20	18.1 [1.104]	22.7 [1.385]

Handling Instructions and Precautions

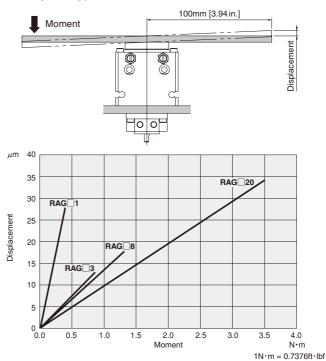

Allowable load


Item	Model	RAG□1	RAG□3	RAG□8	RAG□20
Allowable thrust load Ws	N [lbf]	20[4.5]	60 [13.5]	120 [27.0]	160 [36.0]
Allowable radial load WR	N [lbf]	20[4.5]	80 [18.0]	100 [22.5]	120 [27.0]
Allowable moment M N·m	[ft·lbf]	0.4[0.30]	0.9 [0.66]	1.3 [0.96]	3.5 [2.58]

●Effective torque


RAG₁

RAG_8 N·m 10 and the following state of the


1N·m = 0.7376ft·lbf, 1MPa = 145psi.

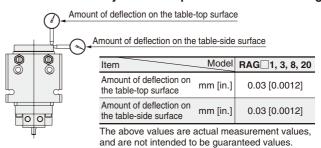

Air pressure

Table displacement caused by moment

In the rotary actuators RAG series, mounting a plate and applying moment on it, and then measure the displacement at 100mm [3.94in.] position from the rotation center.

● Deflection accuracy: Table displacement on 180° swing

Caution: For the load and swing time, follow the below "Model selection procedure" to select within the range of specified values. Moreover, about 80% of the allowable values is recommended to use in applications. By using these values, adverse effects on cylinders and guides can be a minimum.

• Model selection procedure

1. Check the application conditions

Check the following items 1~4

- ①Swing angle (90° or 180°)
- 2 Swing time (s)
- 3Applied pressure (MPa)
- 4 Workpiece shape and materials
- **5** Mounting direction

2. Check the swing time

Check the swing time in 1—2 is within the swing time adjustment range in the specification.

AI -				
Angle	RAG□1	RAG□3	RAG□8	RAG□20
90°	0.05~0.25	0.05~0.4	0.05~0.5	0.06~0.6
180°	0.1~0.5	0.1~0.8	0.1~1.0	0.12~1.2

Note: The swing time is obtained when using the rubber stopper with no load at 0.5MPa condition.

3. Select torque size (select model)

Find the torque T_A required for rotating the workpiece.

$$T_A = I \dot{\omega} K$$

$$\dot{\omega} = \frac{2 \theta}{t^2}$$

I: Mass moment of inertia (kg·m²) Use the equations on p.1311~1314

 $\dot{\omega}$: Uniform angular acceleration (rad/s²)

K: Marginal coefficient 5

 θ : Swing angle (rad)

90°→1.57rad

180°→3.14rad

t: Swing time (s)

Select the model secures the required torque TA by using the applied pressure checked in 1-3, from among the effective torque graph on p.1308.

4. Check the kinetic energy

If kinetic energy exceeds the allowable energy, the actuator could be damaged. Always select a model so that the energy lies within the allowable energy range. When the kinetic energy is large, use a model with shock absorber (-SS2, -SSR, or -SSL). For the allowable kinetic energy, see Table 1.

Find the kinetic energy.

With rubber stopper

$$E = \frac{1}{2} \times I \times \omega^2$$

 $E = \frac{1}{2} \times I \times \omega^2$ E : Kinetic energy (J)

$$\omega = \frac{2 \theta}{t}$$

I: Mass moment of inertia (kg • m2) Use the equations on p.1311~1314

E < Ea

 ω : Angular velocity (rad/s) θ : Swing angle (rad)

90°→1.57rad

180°→3.14rad

t: Swing time (s)

Ea: Allowable energy with rubber stopper ... See Table 1.

• Model selection procedure

1. Check the application conditions

Check the following items 1~4

- ①Swing angle (90° or 180°)
- 2 Swing time [sec.]
- 3 Applied pressure [psi.]
- 4) Workpiece shape and materials
- ⑤ Mounting direction

2. Check the swing time

Check the swing time in 1-2 is within the swing time adjustment range in the specification.

Ī	Anala	Swing time [sec.]			
	Angle	RAG⊡1	RAG□3	RAG□8	RAG□20
	90°	0.05~0.25	0.05~0.4	0.05~0.5	0.06~0.6
Ī	180°	0.1~0.5	0.1~0.8	0.1~1.0	0.12~1.2

Note: The swing time is obtained when using the rubber stopper with no load at 73psi. condition.

3. Select torque size (select model)

Find the torque T'A required for rotating the workpiece.

 $T'_A = I'\dot{\omega}K$

T'A: Torque [ft·lbf]

 $\dot{\omega} = \frac{2 \theta}{42}$

I': Mass moment of inertia [lbf·ft·sec.2] Use the equations on p.1311~1314

 $\dot{\omega}$: Uniform angular acceleration [rad/sec²]

K: Marginal coefficient 5

 θ : Swing angle [rad] 90°→1.57rad

180°→3.14rad

t: Swing time [sec.]

Select the model secures the required torque T'A by using the applied pressure checked in 1-3, from among the effective torque graph on p.1308.

4. Check the kinetic energy

If kinetic energy exceeds the allowable energy, the actuator could be damaged. Always select a model so that the energy lies within the allowable energy range. When the kinetic energy is large, use a model with shock absorber (-SS2, -SSR, or -SSL). For the allowable kinetic energy, see Table 1.

Find the kinetic energy.

With rubber stopper

$$E' = \frac{1}{2} \times I' \times \omega^2$$
 E' : Kinetic energy [ft·lbf] I' : Mass moment of inert

I': Mass moment of inertia [lbf·ft·sec.2] Use the equations on p.1311~1314

E' < E'a

 ω : Angular velocity [rad/sec.]

 θ : Swing angle [rad] 90°→1.57rad 180°→3.14rad

t: Swing time [sec.]

E'a: Allowable energy with rubber stopper

... See Table 1.

With shock absorber

1) Find the equivalent mass m₁.

 $m_1 = \frac{I}{R^2}$

m₁: Equivalent mass (kg)

②Find the equivalent mass m2.

I: Mass moment of inertia (kg·m²) Use the equations on p.1311~1314 to find.

 $m_2 = \frac{2 \times T \times L}{R^3 \times \omega^2}$

R : Distance from the rotation center to the impact point (m) ... See Fig.1 and Table 2. m2: Equivalent mass (kg)

 $\omega = \frac{2\theta}{t}$ 3Find the total mass m.

T: Effective torque (N·m) Use the effective torque graph

 $m = m_1 + m_2$

L: Shock absorber stroke (m) ... See Table 2.

4 Find the impact velocity. $V = R \times \omega$

 ω : Angular velocity (rad/s) θ : Swing angle (rad)

5 Find the kinetic energy.

90°→1.57rad 180°→3.14rad t: Swing time (s)

 $E = \frac{1}{2} \times m \times V^2$

m: Total mass (kg) V: Impact velocity (m/s) E: Kinetic energy (J)

E < Ea

Ea: Allowable energy with shock absorber ... See Table 1.

Table 1. Allowable energy Ea

Model	Allowable energy with rubber stopper (J)	Allowable energy with shock absorber (J)
RAG⊡1	0.003	_
RAG□3	0.005	0.30
RAG□8	0.008	0.53
RAG□20	0.030	1.14

Fig.1 R: Distance from the rotation center to the impact point

Table 2.

Model	Distance R from the rotation center to the impact point (m)	Shock absorber stroke L (m)	Shock absorber model
RAG□3	0.015	0.005	KSHAR5×5-D
RAG□8	0.018	0.005	KSHAR5×5-E
RAG□20	0.021	0.008	KSHAR6×8-F

5. Check the load ratio

Check that the total sum of the load ratio does not exceed 1. For the allowable load, see Table 3 (For the load direction, see the allowable load on p.1308.)

$$\frac{\text{Ws}}{\text{Ws max}} + \frac{\text{Wr}}{\text{Wr max}} + \frac{\text{M}}{\text{M max}} \le 1$$

Table 3. Allowable load

Model	Thrust load Ws MAX (N)	Radial load Wr MAX (N)	Moment M мах (N∙m)
RAG⊡1	20	20	0.4
RAG□3	60	80	0.9
RAG□8	120	100	1.3
RAG□20	160	120	3.5

6. Judgement whether the unit is usable or not

The unit is usable if it satisfies both 4. Kinetic energy and 5. Load ratio.

E < Ea

Total sum of load ratio ≤ 1

With shock absorber

①Find the equivalent weight w₁.

 $w_1 = \frac{l'}{R'^2} \times 32.2$

w1: Equivalent weight [lbf.]

I': Mass moment of inertia [lbf·ft·sec.2] Use the equations on p.1311~1314 to find.

2) Find the equivalent weight w2. R': Distance from the rotation center to the $w_2 = \frac{2 \times T' \times L' \times 32.2}{2}$ impact point [ft] ... See Fig.1 and Table 2. w2: Equivalent weight [lbf.]

 $\omega = \frac{2 \theta}{t}$

T': Effective torque [ft·lbf] Use the effective torque graph

3 Find the total weight w. $w = w_1 + w_2$

L': Shock absorber stroke [ft.] ... See Table 2.

4 Find the impact velocity.

5 Find the kinetic energy.

 ω : Angular velocity [rad/sec.] θ : Swing angle [rad]

 $V' = R' \times \omega$

90°→1.57rad 180°→3.14rad t: Swing time [sec.]

 $E' = \frac{1}{2} \times \frac{W}{32.2} \times V'^2$

w : Total weight [lbf.] V': Impact velocity [ft./sec.] E': Kinetic energy [ft·lbf]

E'a: Allowable energy with shock E' < E'aabsorber ... See Table 1.

Table 1. Allowable energy E'a

Model	Allowable energy with rubber stopper [ft·lbf]	Allowable energy with shock absorber [ft·lbf]		
RAG⊡1	0.002	_		
RAG□3	0.004	0.22		
RAG□8	0.006	0.39		
RAG□20	0.022	0.84		

Fig.1 R': Distance from the rotation center to the impact point

Table 2.

Model	Distance R' from the rotation center to the impact point [in.]	Shock absorber stroke L' [in.]	Shock absorber model
RAG□3	0.59	0.20	KSHAR5×5-D
RAG□8	0.71	0.20	KSHAR5×5-E
RAG□20	0.83	0.31	KSHAR6×8-F

5. Check the load ratio

Check that the total sum of the load ratio does not exceed 1. For the allowable load, see Table 3 (For the load direction, see the allowable load on p.1308.)

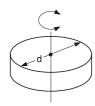
$$\frac{\text{W's}}{\text{W's max}} + \frac{\text{W'r}}{\text{W'r max}} + \frac{\text{M'}}{\text{M' max}} \leq 1$$

Table 3. Allowable load

Model	Thrust load W's MAX [lbf.]	Radial load W'R MAX [lbf.]	Moment M [′] мах [ft∙lbf]
RAG⊡1	4.5	4.5	0.30
RAG□3	13.5	18.0	0.66
RAG□8	27.0	22.5	0.96
RAG□20	36.0	27.0	2.58

6. Judgement whether the unit is usable or not

The unit is usable if it satisfies both 4. Kinetic energy and 5. Load ratio.


E' < E'a

Total sum of load ratio ≤ 1

■Diagram for calculating mass moment of inertia

[When the rotation axis passes through the workpiece]

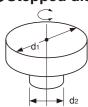
Disk

- Diameter d (m) Mass
 - m (kg)
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{md^2}{8}$$

■Rotating radius

$$\frac{d^2}{8}$$


- Diameter d [ft.]
- Weight w [lbf.]
- ■Mass moment of inertia l'[lbf•ft•sec2]

$$I' = \frac{wd^2}{8 \times 32.2}$$

■Rotating radius

Remark: No particular mounting direction. Consider separately for sliding use.

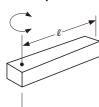
Stepped disk

- Diameter
- d1 (m) d₂ (m)
- ■Mass d₁ portion m₁ (kg) d₂ portion m₂ (kg)
- Diameter d1 [ft.] d₂ [ft.]
- ■Weight d₁ portion w₁ [lbf.] d₂ portion w₂ [lbf.]
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{1}{8} (m_1 d_{12} + m_2 d_{22})$$

■Rotating radius

$$\frac{d_1^2+d_2^2}{8}$$


■Mass moment of inertia l'[lbf·ft·sec.2]

$$I' = \frac{1}{8 \times 32.2} \times (w_1 d_{12} + w_2 d_{22})$$

■Rotating radius

Remark: The d2 portion can be negligible when it is much smaller than the d1 portion.

Bar (when the rotation center passes through the edge)

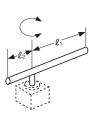
- Bar length Mass
- ℓ (m) m (kg)
- ■Mass moment of inertia I (kg·m²)

■Rotating radius

$$\frac{\ell^2}{3}$$

- Bar length ℓ [ft.] Weight w [lbf.]
- ■Mass moment of inertia I' [lbf·ft·sec.2]

$$I' = \frac{w \ell^2}{3 \times 32.2}$$


■Rotating radius

$$\frac{\ell^2}{3}$$

Remark: Mounting direction is horizontal.

If the mounting direction is vertical, the swing time will change.

Slender rod

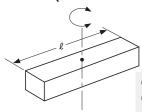
- Rod length ℓ1 (m)
- ℓ2 (m) Mass m₁ (kg) m₂ (kg)
- ■Mass moment of inertia I (kg·m²)
 - $I = \frac{m_1 \ell_{12}}{m_2 \ell_{22}} + \frac{m_2 \ell_{22}}{m_2 \ell_{22}}$
- ■Rotating radius

$$\frac{\ell_{1^{2}}+\ell_{2^{2}}}{3}$$

Rod length ℓ1 [ft.] ℓ2[ft.] Weight w₁ [lbf.]

w₂ [lbf.]

■Mass moment of inertia I' [lbf·ft·sec.2] $\frac{w_1\ell_{1^2}}{3\times32.2} + \frac{w_2\ell_{2^2}}{3\times32.2}$


3×32.2

■Rotating radius $\ell_1^2 + \ell_2^2$ 3

Remark: Mounting direction is horizontal.

If the mounting direction is vertical, the swing time will change.

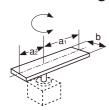
Bar (when the rotation center passes through the center of gravity)

- Bar length Mass
- ℓ (m) m (kg)
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{m \ell^2}{12}$$

■Rotating radius

Bar length


ℓ [ft.] Weight w [lbf.] ■Mass moment of inertia I' [lbf•ft•sec.2]

$$I' = \frac{W \ell^2}{12 \times 32.2}$$

■Rotating radius

Remark: No particular mounting direction.

Thin rectangular plate (rectangular solid)

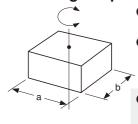
- ●Plate length a1 (m) a2 (m)
- Length of side b (m) Mass
 - m₁ (kg) m₂ (kg)
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{m_1}{12} (4a_1^2 + b^2) + \frac{m_2}{12} (4a_2^2 + b^2)$$

■Rotating radius

$$\frac{(4a_{1}^{2}+b^{2})+(4a_{2}^{2}+b^{2})}{12}$$

- Plate length a1 [ft.] a2 [ft.]
- Length of side b [ft.]
- Weight w₁ [lbf.] w₂ [lbf.]
- ■Mass moment of inertia I' [lbf•ft•sec²]


$$I' = \frac{w_1}{12 \times 32.2} (4a_1^2 + b^2) + \frac{w_2}{12 \times 32.2} (4a_2^2 + b^2)$$

■Rotating radius

$$\frac{(4a_{1}^{2}+b^{2})+(4a_{2}^{2}+b^{2})}{12}$$

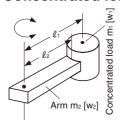
Remark: Mounting direction is horizontal. If the mounting direction is vertical, the swing time will change.

Rectangular parallelepiped

- Length of sides a (m)
- b (m) m (kg) Mass
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{m}{12}(a^2 + b^2)$$

■Rotating radius


- Length of sides a [ft.]
- b [ft.] Weight w [lbf.]
- ■Mass moment inertia l'[lbf·ft·sec2]

$$I' = \frac{W}{12 \times 32.2} (a^2 + b^2)$$

■Rotating radius

Remark: No particular mounting direction. Consider separately for sliding use.

Concentrated load

- Shape of concentrated load
- Distance to center of gravity of concentrated load ℓ_1 (m)
- Length of arm ℓ_2 (m)
- ■Mass of concentrated load m₁ (kg)
- ●Mass of arm m₂ (kg)

■Mass moment of inertia I (kg·m²)

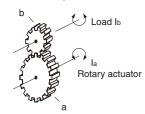
$$I=m_1k^2+m_1\ell_1^2+\frac{m_2\ell_2^2}{3}$$

Rotating radius: k² is calculated according to shape of the concentrated load.

Remark: Mounting direction is horizontal. When m_2 is much smaller than m_1 , calculate as $m_2 = 0$.

Shape of concentrated load

- Distance to center of gravity of concentrated load ℓ_1 [ft.]
- ●Length of arm ℓ₂ [ft.]
- •Weight of concentrated load w₁ [lbf.]
- ●Weight of arm w₂ [lbf.]


■Mass moment of inertia I' [lbf·ft·sec?]

$$I' = \frac{w_1 k^2}{32.2} + \frac{w_1 \ell_1^2}{32.2} + \frac{w_2}{32.2} \times \frac{\ell_2^2}{3}$$

Rotating radius: k^2 is calculated according to shape of the concentrated load.

Remark: Mounting direction is horizontal. When w_2 is much smaller than w_1 , calculate as $w_2 = 0$.

■Gear Equation for calculating the load J_L with respect to rotary actuator axis when transmitted by gears

- ●Gear Rotary actuator side a Load side b
- ●Inertia moment of load

Mas

■Mass moment of inertia I (kg·m²)

Mass moment of inertia of load with respect to rotary actuator axis

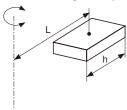
$$I_a = \left(\frac{a}{b}\right)^2 I_b$$

- Gear Rotary actuator side a Load side b
- ●Inertia moment of load

ft•lbf

N∙m

■Mass moment of inertia I' [lbf·ft·sec.2]


Mass moment of inertia of load with respect to rotary actuator axis

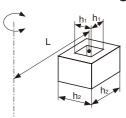
$$I_a = \left(\frac{a}{b}\right)^2 I_b$$

Remark: If the shapes of the gears are too large, the mass moment of inertia of the gears must be also taken into consideration.

[When the rotation axis is offset from the workpiece]

Rectangular parallelepiped

- Length of side h (m)
- ■Distance from rotation axis to the center of load L (m)
- m (kg)
- Length of side h [ft.]
- ■Distance from rotation axis to the center of load L [ft.]
- Weight w [lbf.]
- ■Mass moment of inertia I (kg·m²)


$$I = \frac{mh^2}{12} + mL^2$$

■Mass moment of inertia I' [lbf•ft•sec.2]

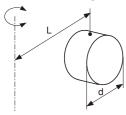
$$I' = \frac{wh^2}{32.2 \times 12} + \frac{wL^2}{32.2}$$

Remark: Same for cube.

Hollow rectangular parallelepiped

Length of side

- h₁ (m) h₂ (m)
- Distance from rotation axis to the center of load L (m)
 - m (kg)
- Length of side h₁ [ft.]
- h₂ [ft.] Distance from rotation axis to the center of load L [ft.]
- Weight w [lbf.]
- ■Mass moment of inertia I (kg·m²)


$$I = \frac{m}{12} (h_2^2 + h_1^2) + mL^2$$

■Mass moment of inertia I' [lbf·ft·sec.2]

$$I' = \frac{w(h_2^2 + h_1^2)}{32.2 \times 12} + \frac{wL^2}{32.2}$$

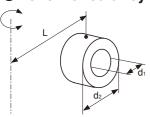
Remark: Cross-section is square only.

Circular cylinder

Diameter

- d (m)
- Distance from rotation axis to the center of load L (m)
- m (kg)
- Mass

- ■Mass moment of inertia I (kg·m²)

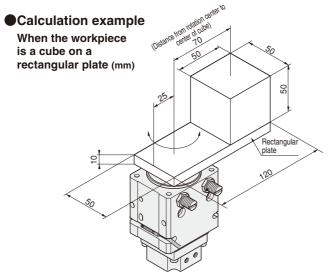

$$I = \frac{md^2}{16} + mL^2$$

- Diameter d [ft.]
- Distance from rotation axis to the center of load L [ft.]
- Weight

- w [lbf.]
- ■Mass moment of inertia I' [lbf·ft·sec.2]

$$I' = \frac{wd^2}{32.2 \times 16} + \frac{wL^2}{32.2}$$

Hollow circular cylinder


Diameter

- d1 (m)
- d₂ (m)
- Distance from rotation axis to the center of load L (m) Mass
 - m (kg)
- Diameter
- d1 [ft.]
- - d₂ [ft.]
- Distance from rotation axis to the center of load L [ft.]
- Weight w [lbf.]
- ■Mass moment of inertia I (kg·m²)

$$I = \frac{m}{16} (d_2^2 + d_1^2) + mL^2$$

■Mass moment of inertia I' [lbf•ft•sec.2]

$$I' = \frac{w(d_2^2 + d_1^2)}{32.2 \times 16} + \frac{wL^2}{32.2}$$

1. Check the application conditions

①Swing angle: 90° ②Swing time: 0.4(s)

③Applied pressure: 0.5 (MPa)

4Workpiece shape: Shown in the above

Workpiece material

Rectangular plate : Aluminum alloy (Specific gravity = $2.68 \times 10^3 \text{ kg/m}^3$)

Cube : Steel (Specific gravity = $7.85 \times 10^{3} \text{ kg/m}^3$)

5 Mounting direction: Horizontal

2. Check the swing time

The swing time is $0.5s/90^{\circ}$, which means there is no problem in the models larger than RAG $\square 3$.

3. Select torque size

Firstly calculate the mass moment of inertia.

Rectangular plate

 $\begin{array}{l} m_1{=}0.05{\times}(0.12{-}0.025){\times}0.01{\times}2.68{\times}10^3{=}0.127~(kg) \\ m_2{=}0.05{\times}0.025{\times}0.01{\times}2.68{\times}10^3{=}0.034~(kg) \end{array}$

$$I_1 = \frac{0.127}{12} \left\{ 4 \times (0.12 - 0.025)^2 + 0.05^2 \right\} + \frac{0.034}{12} \left(4 \times 0.025^2 + 0.05^2 \right)$$

 $=0.42\times10^{-3} (kg \cdot m^2)\cdots1$

Cube

 $m_3 = 0.05 \times 0.05 \times 0.05 \times 7.85 \times 10^3 = 0.981$ (kg)

$$I_2 = \frac{0.981 \times 0.05^2}{12} + 0.981 \times 0.07^2$$

$$=5.01\times10^{-3} (kg\cdot m^2)\cdots(2)$$

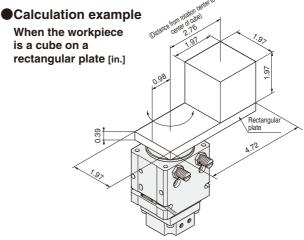
From 1 and 2, the total mass moment of inertia I is $I\!=\!I_1\!+\!I_2$

 $=0.42\times10^{-3}+5.01\times10^{-3}$

 $=5.43\times10^{-3} (kg \cdot m^2) \cdots 3$

According to the given conditions, θ =90°, t=0.4(s) therefore, the uniform angular acceleration $\dot{\omega}$ is

$$\dot{\omega} = \frac{2 \times 1.57}{0.4^2} = 19.625 \text{ (rad/s}^2) \cdots \text{ (a)}$$


From ③ and ④, the required torque TA is

 $T_A = 5.43 \times 10^{-3} \times 19.625 \times 5$

=0.533 (N·m)····⑤

From the Effective torque graph on p.1308, select a model where the torque is more than 0.533 (N·m) at 0.5 MPa.

1. Check the application conditions

①Swing angle: 90°

②Swing time: 0.4[sec.]

3Applied pressure: 73 [psi.]

4) Workpiece shape: Shown in the above

Workpiece material

Rectangular plate: Aluminum alloy (Specific gravity =167 lbf/ft³)

Cube: Steel (Specific gravity =490 lbf/ft³)

5 Mounting direction: Horizontal

2. Check the swing time

The swing time is 0.5sec./90°, which means there is no problem in the models larger than RAG□3.

3. Select torque size

Firstly calculate the mass moment of inertia.

Rectangular plate

$$\begin{split} w_1 &= \frac{1.97}{12} \times \frac{(4.72 - 0.98)}{12} \times \frac{0.39}{12} \times 167 = 0.278 \text{ [lbf.]} \\ w_2 &= \frac{1.97}{12} \times \frac{0.98}{12} \times \frac{0.39}{12} \times 167 = 0.073 \text{ [lbf.]} \\ I'_1 &= \frac{0.278}{12X322} \left[4 \times \left(\frac{4.72 - 0.98}{12} \right)^2 + \left(\frac{1.97}{12} \right)^2 \right] + \frac{0.073}{12X322} \left[4 \times \left(\frac{0.98}{12} \right)^2 + \left(\frac{1.97}{12} \right)^2 \right] \\ &= 0.31 \times 10^{-3} \text{ [lbf·ft·sec²]····①} \end{split}$$

Cube

$$w_{3} = \frac{1.97}{12} \times \frac{1.97}{12} \times \frac{1.97}{12} \times 490 = 2.17 \text{ [lbf.]}$$

$$I'_{2} = \frac{2.17}{12 \times 32.2} \times \left(\frac{1.97}{12}\right)^{2} + \frac{2.17}{32.2} \times \left(\frac{2.76}{12}\right)^{2}$$

$$= 3.71 \times 10^{-3} \text{ [lbf·ft·sec}^{2}] \cdots (2)$$

From ① and ②, the total mass moment of inertia I' is $I'=I'_1+I'_2=0.31\times 10^{-3}+3.71\times 10^{-3}$

 $= 4.02 \times 10^{-3} + 3.71 \times 10^{-3}$ = 4.02×10^{-3} [lbf·ft·sec.²]...3

According to the given conditions, θ =90°, t=0.4[sec.] therefore, the uniform angular acceleration $\dot{\omega}$ is

$$\dot{\omega} = \frac{2 \times 1.57}{0.4^2} = 19.625 \text{ [rad/sec.}^2] \cdots \text{ (4)}$$

From 3 and 4, the required torque T'A is T'A =4.02 \times 10⁻³ \times 19.625 \times 5

=0.394 [ft·lbf]····5

From the Effective torque graph on p.1308, select a model where the torque is more than 0.394 [ft·lbf] at 73 psi.

RAG 8-90

4. Check the kinetic energy

With rubber stopper

According to the given conditions, θ =90°, t=0.4(s) therefore.

$$\omega = \frac{2 \times 1.57}{0.4} = 7.85 \, (\text{rad/s}) \cdots (1)$$

From ①, the kinetic energy E is

$$E = \frac{1}{2} \times 5.43 \times 10^{-3} \times 7.85^2 = 0.167 \text{ (J)} \cdots \text{ (2)}$$

0.167 > 0.008, which means the rubber stopper is not sufficient. Therefore, recalculate a case with shock absorber.

With shock absorber

$$m_1 = \frac{5.43 \times 10^{-3}}{0.018^2} = 16.76 \text{ (kg)} \cdots \text{ (kg)}$$

$$m_2 = \frac{2 \times 0.785 \times 0.005}{0.018^3 \times 7.85^2} = 21.84 \text{ (kg)} \cdots \text{ (kg)}$$

From (3) and (4),

m=16.76+21.84=38.60 (kg)····5

From 5 and 6, find the kinetic energy.

$$E = \frac{1}{2} \times 38.6 \times 0.141^2 = 0.384 \text{ (J)}$$

0.384 < 0.53, which means there is no problem in the application with shock absorber.

5. Check the load ratio

[Thrust load]

The total mass is

0.034+0.127+0.981=1.142 (kg)

Therefore

Ws=1.142×9.8=11.192 (N)···①

[Radial load]

Since no radial load is applied,

W_R=0 (N)····②

[Moment]

The moment M₁ by the rectangular plate is

$$M_1 = (0.034 + 0.127) \times 9.8 \times \left(\frac{0.12}{2} - 0.025\right) = 0.055 \text{ (N·m)} \cdots 3$$

The moment M₂ by the cube is

 $M_2=0.981\times9.8\times0.07=0.673 (N \cdot m)\cdots4$

From ③ and ④, the total moment is

M=0.055+0.673=0.728 (N·m)···⑤

From 1, 2, and 5, find the load ratio

$$\frac{W_S}{W_{S\,MAX}} + \frac{W_R}{W_{R\,MAX}} + \frac{M}{M\,_{MAX}} = \frac{11.192}{120} + \frac{0}{100} + \frac{0.728}{1.3} = 0.65 < 1.0$$

the load ratio is less than 1.0, and satisfactory.

6. Check the unit specifications

Selection of **RAG** satisfies both the kinetic energy and load ratio requirements.

4. Check the kinetic energy

With rubber stopper

According to the given conditions, θ =90°, t=0.4[sec.] therefore,

$$\omega = \frac{2 \times 1.57}{0.4} = 7.85 \text{ [rad/sec.]} \cdots \text{(1)}$$

From ①, the kinetic energy E' is

$$E' = \frac{1}{2} \times 4.02 \times 10^{-3} \times 7.85^2 = 0.124 \text{ [ft·lbf]} \cdots \text{?}$$

0.124 > 0.006, which means the rubber stopper is not sufficient. Therefore, recalculate a case with shock absorber.

With shock absorber

$$w_1 = \frac{4.02 \times 10^{-3} \times 32.2}{\left(\frac{0.71}{12}\right)^2} = 36.98 \text{ [lbf.]} \cdots 3$$

$$w_2 = \frac{2 \times 0.579 \times \frac{0.2}{12} \times 32.2}{\left(\frac{0.71}{12}\right)^3 \times 7.85^2} = 48.69 \text{ [lbf.]} \cdots \text{ }$$

From 3 and 4,

w=36.98+48.69=85.67 [lbf.]····5

$$V' = \frac{0.71}{12} \times 7.85 = 0.464 \cdots$$

From 5 and 6, find the kinetic energy.

$$E' = \frac{85.67 \times 0.464^2}{2 \times 32.2} = 0.286 [ft \cdot lbf]$$

0.286 < 0.39, which means there is no problem in the application with shock absorber.

5. Check the load ratio

[Thrust load]

The total weight is

0.073+0.278+2.17=2.52 [lbf.]

Therefore,

W's=2.52 [lbf.]···①

[Radial load]

Since no radial load is applied,

W'_R=0 [lbf.]···②

[Moment]

The moment M'1 by the rectangular plate is

$$\text{M'}_1 = (0.073 + 0.278) \times \left(\frac{1}{2} \times \frac{4.72}{12} - \frac{0.98}{12}\right) = 0.040 \text{ [ft·lbf]} \cdot \cdot \cdot 3$$

The moment M'2 by the cube is

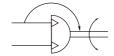
$$M_2'=2.17\times\frac{2.76}{12}=0.499 [ft\cdot lbf]\cdots$$

From ③ and ④, the total moment is M'=0.040+0.499=0.539 [ft·lbf]…⑤

From ①, ②, and ⑤, find the load ratio

$$\frac{\text{W's}}{\text{W's}_{\text{MAX}}} + \frac{\text{W'r}}{\text{W'r}_{\text{RMAX}}} + \frac{\text{M'}}{\text{M'}_{\text{MAX}}} = \frac{2.52}{27.0} + \frac{0}{22.5} + \frac{0.539}{0.96} = 0.65 < 1.0$$

the load ratio is less than 1.0, and satisfactory.


6. Check the unit specifications

Selection of **RAG** 8-90-SS2 satisfies both the kinetic energy and load ratio requirements.

ROTARY ACTUATORS

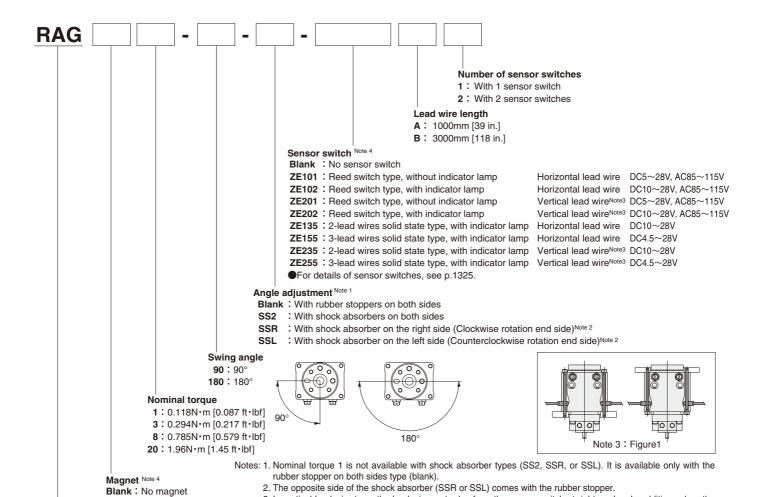
RAG Series

Symbol

Specifications

Item	Model	RAG□1	RAG□3	RAG□8	RAG□20			
Operation type	Wodor	Double acting single vane type						
Effective torqueNote 1	N·m[ft·lbf]	0.118 [0.087]						
Media	iv infic ion	0.110 [0.007]	Ai		1.96 [1.45]			
Operating MPa	With rubber stopper	0.25~0.7 [36.3~102]	7 11	0.2~0.7 [29~102]				
-	With shock absorber	——————————————————————————————————————	0.32~0.7 [46.4~102]	0.2~0.7	[29~102]			
Proof pressure	MPa [psi.]		1.03 [[149]	-			
Operating temperature r			5~60 [4	1~140]				
	With rubber stopper		Rubber I	bumper				
Cushion	With shock absorber	_		Shock absorber				
0 :	90° type	_5°~95°						
Swing angle range	180° type	−5°~185°						
Swing angle adjustment	90° type	Clockwise rotation end: $\pm 5^{\circ}$ referred to 0° position/Counterclockwise rotation end: $\pm 5^{\circ}$ referred to 90° position						
range ^{Note 2}	180° type	Clockwise rotation end: $\pm 5^{\circ}$ referred to 0° position/Counterclockwise rotation end: $\pm 5^{\circ}$ referred to 180° position						
Swing time adjustment ra	nge ^{Note 3} s/90°	0.05~0.25	0.05~0.4	0.05~0.5	0.06~0.6			
Allowable energy	With rubber stopper	0.003 [0.002]	0.005 [0.004]	0.008 [0.006]	0.03 [0.02]			
J [ft·lbf]	With shock absorber	_	0.3 [0.22]	0.53 [0.39]	1.14 [0.84]			
Allowable thrust load	N [lbf.]	20 [4.5]	60 [13.5]	120 [27.0]	160 [36.0]			
Allowable radial load	N [lbf.]	20 [4.5]	80 [18.0]	100 [22.5]	120 [27.0]			
Allowable moment	N·m [ft·lbf]	0.4 [0.3]	0.9 [0.7]	1.3 [1.0]	3.5 [2.6]			
Deflection mm[in.]	Table-top surface	0.00.00.001						
accuracy Note 4	Table-side surface	0.03 [0.0012]						
Lubrication		Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)						
Port size			M5×	(0.8				

- Notes: 1. Effective torque is the value when the operating pressure is 0.5 MPa [73 psi.].
 - 2. For the swing end position, see p.1320.
 - 3. The swing time adjustment range is the value by using the rubber stopper option, with no load at air pressure of 0.5 MPa [73 psi.]. (reference value)
 - 4. The deflection accuracy is an actual measurement value, and is not intended to be a guaranteed value.


Shock Absorber Specifications

Item	Model	KSHAR5×5-D	KSHAR5×5-E	KSHAR6×8-F
Applicable model		RAG□3	RAG□8	RAG∐20
Maximum absorption	J [ft∙lbf]	1.0 [0.74]	2.0 [1.5]	3.0 [2.2]
Absorption stroke	mm [in.]	5 [0	0.20]	8 [0.31]
Maximum operating freque	ency cycle/min	6	60	30
Maximum impact speed	mm/s[in./sec.]		300 [11.8]	
Angle variation		8° o	rless	12° or less
Operating temperature rar	nge °C [°F]		0~60 [32~140]	

Caution: Even if the application is within the shock absorber absorption range, follow also within the rotary actuator RAG series swing time adjustment and

Remarks: 1. Do not loosen or remove the small screw on the rear end of the shock absorber. The oil inside will leak out which will fail the function of the shock absorber.

2. The life of the shock absorber may vary from the rotary actuator RAG series depending on its operating conditions.

Additional Parts

Rotary actuator RAG series

Rubber stopper

Basic model

CRK **570**: For RAG □ 1-□ **588**: For RAG □ 3- □, and RAG □ 8- □

: With magnet

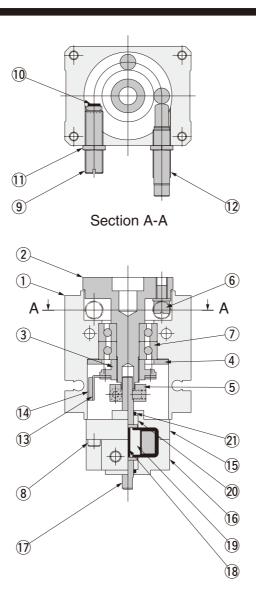
589: For RAG 20- □

Shock absorber

KSHAR $5\times5-D$: For BAG \square 3- \square **5**×**5-E**: For RAG□8-□ **6**×**8-F**: For RAG□20-□

Remark: The shock absorber or rubber stopper comes as a set consisting of its body and 1 mounting nut.

Mass

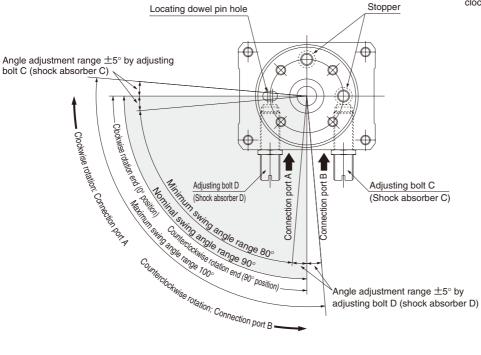

4. When mounting a sensor switch, select the type with a magnet.

3. In vertical lead wire type, the lead wire protrudes from the sensor switch at right angles. In addition, when the

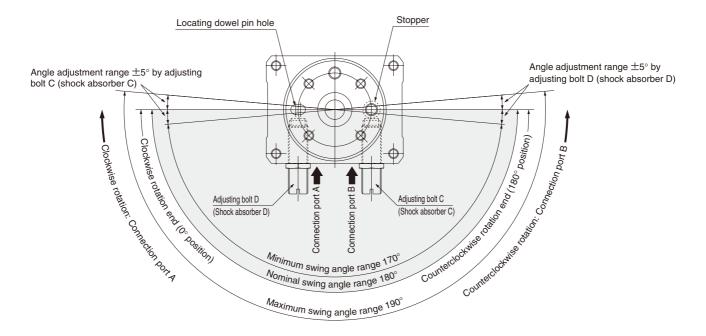
mounting method for RAGS1 or 3 is as shown in Figure 1, use the vertical lead wire type.

			g [oz.]	
Mo	del	Mass		
Model		No magnet	With magnet	
RAG□1-90		290 [10.23]	292 [10.30]	
RAG□1-18	0	287 [10.12]	288 [10.16]	
RAG□3-90		451 [15.91]	453 [15.98]	
RAG□3-90	-SS2	451 [15.91]	453 [15.98]	
RAG□3-90	-SSR(L)	451 [15.91]	453 [15.98]	
RAG□3-18	0	448 [15.80]	449 [15.84]	
RAG□3-18	0-SS2	448 [15.80]	449 [15.84]	
RAG□3-18	0-SSR(L)	448 [15.80]	449 [15.84]	
RAG□8-90		641 [22.61]	643 [22.68]	
RAG□8-90	-SS2	641 [22.61]	643 [22.68]	
RAG□8-90	-SSR(L)	641 [22.61]	643 [22.68]	
RAG□8-18	0	638 [22.50]	639 [22.54]	
RAG ☐8-18	0-SS2	638 [22.50]	639 [22.54]	
RAG ☐8-18	0-SSR(L)	638 [22.50]	639 [22.54]	
RAG □20-9	0	1026 [36.19]	1028 [36.26]	
RAG □20-9	0-SS2	1030 [36.33]	1032 [36.40]	
RAG□20-9	0-SSR(L)	1028 [36.26]	1030 [36.33]	
RAG□20-1	80	1022 [36.05]	1023 [36.08]	
RAG□20-1	80-SS2	1026 [36.19]	1027 [36.23]	
RAG□20-1	80-SSR(L)	1024 [36.12]	1025 [36.16]	
CRK570		4 [0.14]		
CRK588		10 [0.35]		
CRK589		20 [0.71]		
KSHAR5×	5-D	10 [0.35]		
KSHAR5×	5-E	10 [0.35]		
KSHAR6×	8-F	22 [(0.78]	
Sensor switch			g [oz.	
One sensor	Lead wire length A	15 [0	0.53]	
switch	Lead wire length B	35 [1.23]	
		•		

RAG1, 3, 8, 20

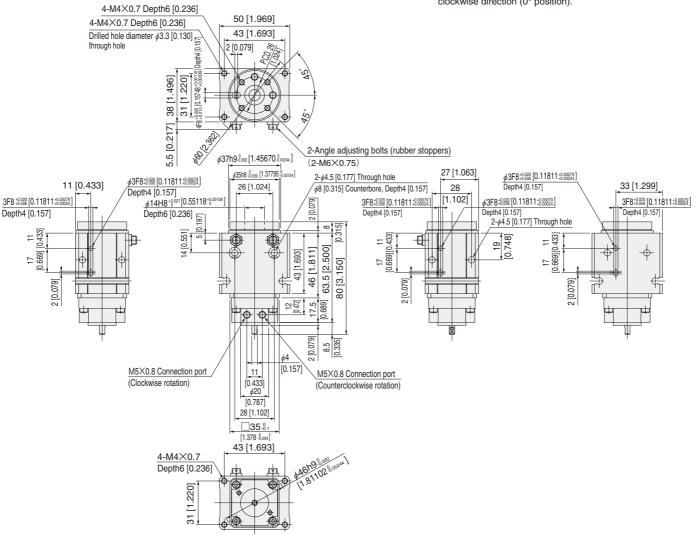


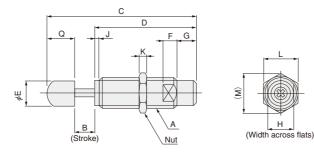
Major Parts and Materials


No.	Parts	Materials	Remarks
1	Body	Aluminum alloy (anodized)	
2	Table	Stainless steel	
3	Nut	Aluminum alloy (anodized)	
4	Cover	Aluminum alloy (anodized)	
(5)	Bracket	Stainless steel	
6	Stopper	Special steel	
7	Bearing	Steel	RAG□1: Special bearing RAG□3~20: Angular bearing
8	Bolt	Stainless steel	
9	Adjusting bolt	Steel (nickel plated)	
10	Bumper	Synthetic rubber (NBR)	
11)	Hexagon nut	Mild steel (zinc plated)	
12	Shock absorber	1	Applied only for -SS□
13	Magnet holder	Aluminum alloy (anodized)	Applied only for RAGS□
14	Magnet	Plastic magnet	Applied only for RAGS□
15	Body A	Aluminum alloy (anodized)	
16	Body B	Aluminum alloy (anodized)	
	Vane axis (shaft portion)	Steel (nitrided)	
17	Vane axis (rotor portion)	Molded plastic	
	Vane axis (sealing portion)	Synthetic rubber (NBR)	
18	Shoe seal	Synthetic rubber (NBR)	
19	Shoe	Molded plastic	
20	Bearing	Sintered oil impregnated alloy	
21)	O-ring	Synthetic rubber (NBR)	

●90° type

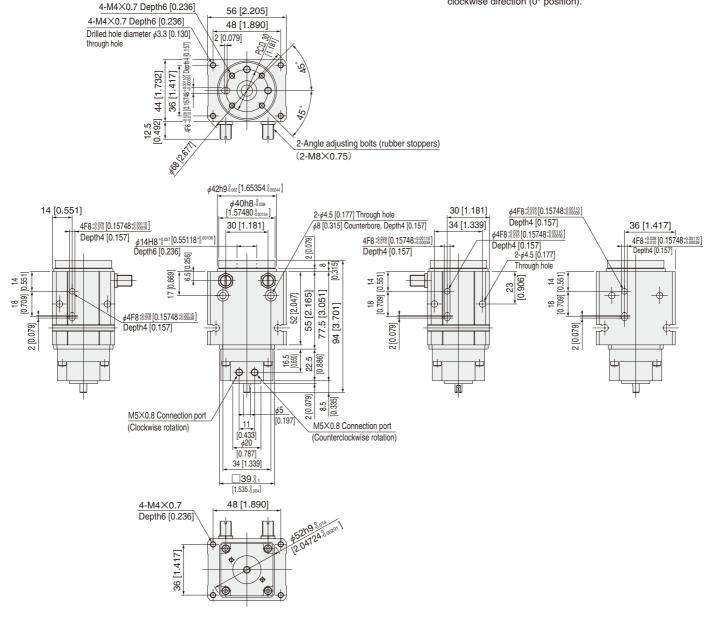
Remark: The diagrams show when air is supplied to connection port A for the clockwise rotation, and the table has completed the rotation in the clockwise direction (0° position).


●180° type

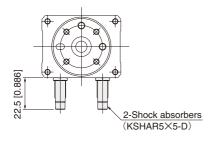

RAG_1-90 RAG_1-180

Remark: The drawings show when air is supplied to the connection port for the clockwise rotation, and the table has completed the rotation in the clockwise direction (0° position).

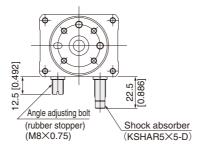
Dimensions of Shock Absorber mm [in.]



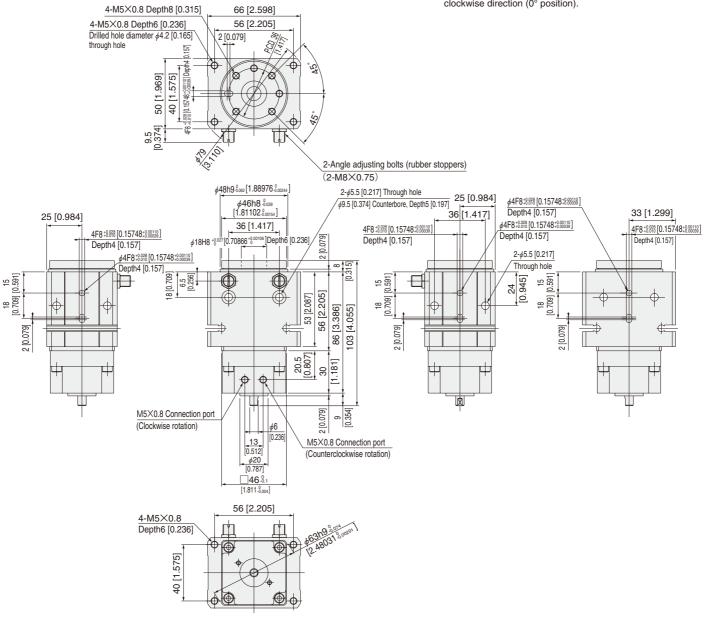
Model	Α	В	С	D	E	F	G	Н	J	K	L	М	Q
KSHAR5×5-D	M8×0.75	5[0.197]	46[1.811]	31[1.220]	6[0.236]	3[0.118]	5[0.197]	7[0.276]	1.2[0.047]	2[0.079]	10[0.394]	11.5[0.453]	10[0.394]
KSHAR5×5-E	M8×0.75	5[0.197]	46[1.811]	31[1.220]	6[0.236]	3[0.118]	5[0.197]	7[0.276]	1.2[0.047]	2[0.079]	10[0.394]	11.5[0.453]	10[0.394]
KSHAR6×8-F	M10×1	8[0.315]	61[2.402]	45[1.772]	8[0.315]	4[0.157]	5[0.197]	9[0.354]	2[0.079]	3[0.118]	12[0.472]	13.9[0.547]	8[0.315]

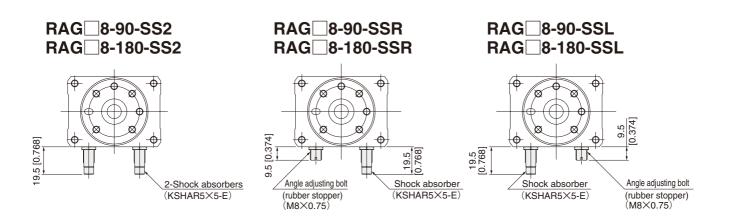

RAG 3-90 RAG 3-180

Remark: The drawings show when air is supplied to the connection port for the clockwise rotation, and the table has completed the rotation in the clockwise direction (0° position).



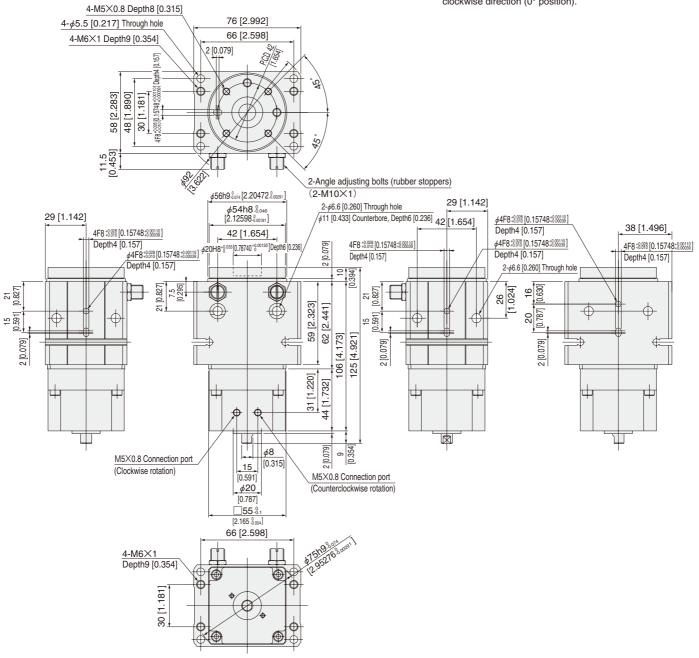
RAG □ 3-90-SSR RAG □ 3-180-SSR

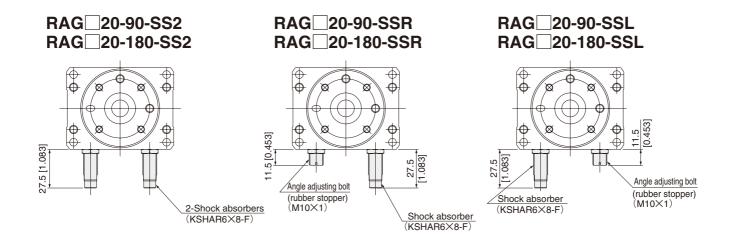

RAG 3-90-SSL RAG 3-180-SSL



RAG 8-90 RAG 8-180

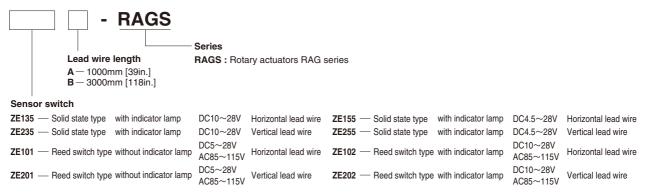
Remark: The drawings show when air is supplied to the connection port for the clockwise rotation, and the table has completed the rotation in the clockwise direction (0° position).





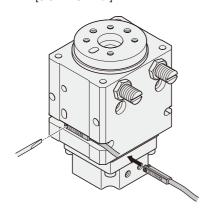
RAG 20-90 RAG 20-180

Remark: The drawings show when air is supplied to the connection port for the clockwise rotation, and the table has completed the rotation in the clockwise direction (0° position).

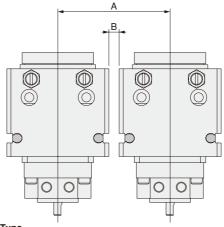


SENSOR SWITCHES

Solid State Type, Reed Switch Type


Order Codes

[•] For details of sensor switches, see p.1544.


Moving Sensor Switch

- Loosening the mounting screw allows the sensor switch to be moved along the switch mounting groove on the rotary actuator.
- ■Tighten the mounting screw with a tightening torque of 0.1~ 0.2N • m [0.9~1.8in • lbf].

When Mounting the Actuators with Sensor Switches in Close Proximity

When mounting the actuators in close proximity, use them at the values shown in the table below, or larger.

Solid State T	уре	mm [in.]
Model	A	В
RAGS1	52 [2.047]	2 [0.079]
RAGS3	58 [2.283]	2 [0.079]
RAGS8	66 [2.598]	0.101
RAGS20	76 [2.992]	0 [0]

	Reed Switch	Туре	mm [in.]
	Model	A	В
_	RAGS1	50 [1.969]	
	RAGS3	56 [2.205]	0 [0]
	RAGS8	66 [2.598]	0 [0]
	RAGS20	76 [2.992]	

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range: ℓ

Refers to the range of angles as the magnet moves with the vane to switch ON the sensor, and as the magnet moves further in the same direction until the sensor goes OFF again.

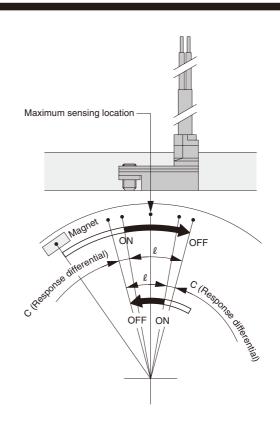
Response Differential: C

Refers to the angle between the point where the sensor is switched ON as the magnet moves with the vane, and the point where the sensor is turned OFF as the magnet moves in the opposite direction.

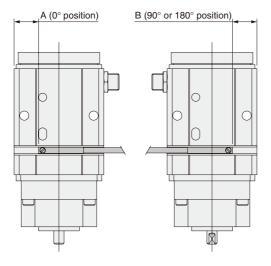
●Solid state type

Item Model	RAGS1	RAGS3	RAGS8	RAGS20
Operating range: ℓ	6°∼10°	5°∼9°	5°∼9°	4°~8°
Response differential: C	0.5° or less			
Maximum sensing location Note	6mm [0.236in.]			

Remark: The above table shows reference values.


Note: This is the length measured from the switch's oppoiste end side to the lead wire.

■Reed switch type


Item Model	RAGS1	RAGS3	RAGS8	RAGS20	
Operating range: ℓ	13°~20°	12°~18°	11°~17°	8°∼15°	
Response differential: C	3° or less				
Maximum sensing location Note	10mm [0.394in.]				

Remark: The above table shows reference values.

ote: This is the length measured from the switch's oppoiste end side to the lead wire.

Mounting Location of Swing End Detection Sensor Switch

Remark: For the table's 0° , 90° , and 180° positions, see p.1320.

●Solid State Type mm [in.]						
Model	90° and 1	180° types				
Model	А	В				
RAGS1	13 [0.512]					
RAGS3	16 [0.630]					
RAGS8	19 [0.748]					
RAGS20	23 [0 906]					

•Reed Switch Type mm [in.		
Model	90° and 180° types	
	Α	В
RAGS1	9 [0.354]	
RAGS3	12 [0.472]	
RAGS8	15 [0.591]	
RAGS20	19 [0.748]	