KロGFNEI

Air Cylinder

SWING CYLINDER

Selection and swing angle

Selection

1．Allow plenty of margin for swing output （torque）．Select a model so that the required torque is 80% or less（ 50% or less for fluctuating loads）of the effective torque． The inertia load in swing operation becomes larger when the load mass is large，or during fast operating speeds，and it may exceed the allowable kinetic energy． In this case，install a shock absorber to prevent the Swing cylinder from being directly applied to inertia force．
2．Swing cylinders can have swing angles of $45^{\circ}, 90^{\circ}, 135^{\circ}$ ，or 180° ，and swing angle adjustment is allowed within the ranges shown in the table below．

Model	Swing angle range
SDA25 $\times \square-45$	$20^{\circ} \sim 105^{\circ}$
SDA25 $\times \square-90$	$45^{\circ} \sim 105^{\circ}$
SDA25 $\times \square-135$	$100^{\circ} \sim 195^{\circ}$
SDA25 $\times \square-180$	$135^{\circ} \sim 195^{\circ}$
SDA40 $\times \square-45$	$20^{\circ} \sim 100^{\circ}$
SDA40 $\times \square-90$	$80^{\circ} \sim 100^{\circ}$
SDA40 $\times \square-135$	$100^{\circ} \sim 190^{\circ}$
SDA40 $\times \square-180$	$170^{\circ} \sim 190^{\circ}$

Cautions：1．The cylinder may be damaged if the kinetic energy is too large．Always use it under the maximum allowable energy．
2．For details concerning kinetic energy， see the separate literature＂Rotary Actuator Selection Materials．＂

Mounting

Although there is no particular restriction on mounting direction，ensure in vertical mountings that the piston rod and the load＇s applying point are aligned，and avoid applying off centered load．In addition，lateral loads on the piston rod should be at or below the values in the table below．
Allowable lateral load
N ［lbf．］

Model	Stroke mm				
	15	25	50	75	100
SDA25	6.9	5.9	4.9	-	-
	$[1.55]$	$[1.33]$	$[1.10]$		
SDA40	16.7	15.7	13.7	11.8	9.8
	$[3.75]$	$[3.53]$	$[3.08]$	$[2.65]$	$[2.20]$

Cautions：1．Since a large radial load，moment， eccentricity of rotating rod，or an excessive inertia load，could cause inaccurate operation，or damage to the swing cylinder，always take appropriate countermeasures．
2．There is a certain amount of backlash between the piston rod and bushing，which could result in deflection during swings．Note that deflection will increase at longer strokes or when lateral loads are applied．

Swing angle adjustment and swing time

1．The flat surface of the piston rod has been adjusted as follows at shipping．
【 90° and 180° specifications】
The flat surface of the piston rod at both swing ends is parallel to the plane of the swing portion＇s mounting surface．
【 45° and 135° specifications】
Locate the mounting surface of the swing portion＇s sensor switch faces up，and set as shown in the diagrams below when it is at the left swing end，as viewed from the piston rod．

—— Rod position at left swing end
--- Rod position at right swing end
Remark：To designate piston rod position relationships at swing angles or swing ends other than those diagrams above，consult us．
2．The swing angle is easily adjustable on the Swing cylinders．Loosening the lock nut and turning the adjusting screw to the right（clockwise）makes the swing angle smaller，while turning it to the left（counterclockwise）makes the swing angle larger．

Remark：The above diagrams show the state with the swing portion at the left swing end（as adjusted at shipping）．
Note：The swing angle ranges in parentheses show the minimum and maximum angles at which the angle can be adjusted with the swing angle adjusting screw．Care must be exercised，however，that the swing angle adjusting screw will protrude far from the body when adjusted to the maximum swing angle．Use close to the specification angle as much as possible．
In adjusting the swing angle to increase，however，do not let the adjusting screw protrude farther from the end surface of the swing portion shown in the table below．

[^0] hand，supplying air to connection port B swings it to the direction B ，and turns $O N$ sensor switch B ．
3. Use the table below as a guide for the swing time (the time from the start of the swing to the end of the swing).
Swing time at 0.5 MPa air pressure without load

Model	Swing time			
	45°	90°	135°	180°
SDA25	$0.2 \sim 0.5$	$0.2 \sim 0.5$	$0.4 \sim 0.8$	$0.4 \sim 1.0$
SDA40	$0.2 \sim 1.0$	$0.2 \sim 1.2$	$0.4 \sim 1.8$	$0.4 \sim 2.5$

Cautions: 1. The swing cylinder has a maximum backlash (play at swing end) of 3.5° for SDA25 and 2.5° for SDA40. For cases requiring precise positioning, install an external stopper, etc.
2. The recommended tightening torque for the lock nut is about $392 \mathrm{~N} \cdot \mathrm{~cm}$ [34.7in.lbf]. For tightening, use a 13 mm [0.512 in.$]$ standard wrench. Avoid using monkey wrenches, etc. The end cover may be damaged if excessively tightened.
3. When using reed type sensor switches on a swing portion, the sensor switch may malfunction during long swing time application. For low speed operations, use a solid state type sensor switch.
Remarks: In addition to the standard specifications, the Swing cylinders series in the following specifications are available.

1. No-backlash at swing end type
2. Double swing torque type (nobacklash at swing end)
For details, consult us.

Sensor switches

Mounting location and moving

Cylinder portion

When a sensor switch is mounted in the locations shown below, the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke. By loosening the mounting screw, the sensor switch can be moved freely, along with the strap, in either the axial or circumferential directions. Cannot move the sensor switch alone.

Mounting location of end of stroke
detection sensor switch: A, B
mm [in.]

	mm [in.]			
Cylinder type	Sensor switch type			
	ZG5 $\square \square, \mathrm{CS} \square \mathrm{M}$	CS $\square \mathrm{F}$		
	A	B	A	B
SDA25X $\square-\square$	$27[1.06]$	$12[0.47]$	$21[0.83]$	$7[0.28]$
SDA40X $\square-\square$	$31[1.22]$	$16[0.63]$	$25[0.98]$	$11[0.43]$

Caution: For the sensor switch tightening torques, use the values listed below.
ZG5 $\square \square$, CS \square M $-49 \mathrm{~N} \cdot \mathrm{~cm}[4.3 \mathrm{in} \cdot \mathrm{lbf}]$
$\mathbf{C S} \square \mathbf{F} \longrightarrow 68.6 \mathrm{~N} \cdot \mathrm{~cm}[6.1 \mathrm{in} \cdot \mathrm{lbf}]$

-Swing portion

When a sensor switch is mounted in the locations shown below, the magnet comes to the maximum sensing location of the sensor switch at the swing end.
To move the sensor switch, loosen the holder setscrew.

(The diagram shows a view from the head cover side)
Mounting location of sensor switch for specified angle detection: X
mm [in.]

Cylinder model	Sensor switch type		
	CS5T	CS11T	ZC1 $\square \square$
SDA25 $\times \square-\mathbf{4 5 , 1 3 5}$	$6[0.236]$	$9.5[0.374]$	$7.5[0.295]$
SDA25 $\times \square-90,180$	$9[0.354]$	$12.5[0.492]$	$10.5[0.413]$
SDA40 $\times \square-45,135$	$4.5[0.177]$	$8[0.315]$	$6[0.236]$
SDA40 $\times \square-90,180$	$9.5[0.374]$	$13[0.512]$	$11[0.433]$

Cautions: 1. Set the holder mounting screw's tightening torque to $29.4 \mathrm{~N} \cdot \mathrm{~cm}$ [$2.6 \mathrm{in} \cdot \mathrm{lbf}$], as follows.
When the swing angle is adjusted to 60° or less, the left and right sensor switches may detect (turn on) at the same time, due to relationships of the sensor switch operating range and response differential. To prevent this, take one of the following measures.
(1) Set just one of either the left or right sensor switches.

General precautions

Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the Swing cylinder. Entering metal chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

Atmosphere

1. If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.
2. The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.
Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Lubrication

The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or equivalent.
Avoid using spindle oil or machine oil.

Media

1. Use air for the media. For the use of any other media, consult us.
2. Air used for the Swing cylinder should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum $40 \mu \mathrm{~m}$) near the Swing cylinder or valve to remove collected liquid or dust. In addition, drain the air filter periodically.
(2) Set the sensor switch to a location just off of the maximum sensing location (but still within the operating range) for detection.
3. The small piston strokes in the swing portion can make it impossible to accurately detect the swing angle.
If precise angle detection is required, use an external limit switch, etc., for detection.
4. Since the rack and piston (magnet) are separate parts, moving the piston rod without applying air pressure may cause the sensor switches at both swing ends to enter the ON state. When checking operation of the swing portion sensor switches, always apply air pressure to check.
5. If an external stopper, etc., is limiting the swing angle, care must be exercised that sensor switches in the above adjusting ranges may fail to operate.

- Caution when installing a sensor switch on the cylinder

	In the ZC type sensor switches, the opposite side from the model marking surface is the sensing surface side. Mount it so that the cylinder magnet comes to the sensing surface side.

Specifications

Type	Basic type	SDA25 $\times \square$				SDA40× \square			
Item	Specification angle	-45	-90	-135	-180	-45	-90	-135	-180
Media		Air							
Operating pressure range MPa [psi.]		$0.2 \sim 0.7$ [29~102]							
Proof pressure $\quad \mathrm{MPa}$ [psi.]		1.03 [149]							
Operating temperature range $\quad{ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$		0~60 [32~140]							
Lubrication		Not required							
Cylinder portion	Operation type	Double acting type							
	Operating speed range mm / s [in. $/ \mathrm{sec}$.]	50~500 [2.0~19.7]							
	Cushion	On both sides (Rubber bumper)							
	Port size Rc	1/8							
	Stroke tolerance mm [in.]	$\begin{gathered} +1 \\ 0 \\ 0 \end{gathered}\left[\begin{array}{c} +0.039 \\ 0 \end{array}\right]$							
Swing portion	Operation type	Double acting piston type with swing angle adjustment (Rack and pinion type)							
	Effective torque (at 0.5 MPa [73psi.]) $\mathrm{N} \cdot \mathrm{m}[\mathrm{ft} \cdot \mathrm{lbf}]$	0.549 [0.405]				1.294 [0.954]			
	Swing angle range	$20^{\circ} \sim 105^{\circ}$	$45^{\circ} \sim 105^{\circ}$	$100^{\circ} \sim 195^{\circ}$	$135^{\circ} \sim 195^{\circ}$	$20^{\circ} \sim 100^{\circ}$	$80^{\circ} \sim 100^{\circ}$	$100^{\circ} \sim 190^{\circ}$	$170^{\circ} \sim 190^{\circ}$
	Backlash	$3.5{ }^{\circ}$				$2.5{ }^{\circ}$			
	Swing time Note 1 (at 0.5 MPa [73psi.] without load)	$0.2 \sim 0.5$	$0.2 \sim 0.5$	$0.4 \sim 0.8$	$0.4 \sim 1.0$	$0.2 \sim 1.0$	0.2~1.2	$0.4 \sim 1.8$	$0.4 \sim 2.5$
	Cushion	None							
	Bore size \times stroke ${ }^{\text {Note1 }} \mathrm{mm}$ [in.]	16×6.3 [0.630 $0 . .488]\|16 \times 12.6[0.630 \times 0.496]\| 16 \times 18.9 \times[0.630 \times 0.744] \mid 16 \times 25.2[0.630 \times 0.992]$				$20 \times 9.4[0.787 \times 0.370]\|20 \times 18.8[0.787 \times 0.740]\| 20 \times 28.3[0.787 \times 1.114] \mid 20 \times 37.7[0.787 \times 1.484]$			
	Allowable energy Note2 J [in.lbf]	0.002 (0.006) [0.018 (0.053)]				0.006 (0.02) [0.053 (0.18)]			
	Port size Rc	1/8							

Notes: 1. For the specification angle.
2. The allowable energy in () is obtained when the rod end specification is square.

Order Codes

※Remark: Swing portion piston and rack are separated.

Major Parts and Materials

Cylinder portion	
Parts	Materials
Cylinder tube	Stainless steel
Cylinder piston	Aluminum alloy (anodized)
Piston rod	Steel (hard chrome plated)
Rod cover	Aluminum alloy (anodized)
Head cover	Steel (nickel plated)
Stud	Special steel (Plastic for SDA25)
Ring	Plastic
Wear ring	Synthetic rubber
Seal	Plastic magnet
Bumper	
Magnet	

Bore Size and Stroke

mm		
Model	Standard strokes	Maximum available stroke
SDA25 $\times \square-\square$	152550	150
SDA40 $\square \square-\square$	15255075100	300

Mass

kg [lb					
Item Model		SDA25 $\times \square-45,90$	SDA25 $\times \square$-135, 180	SDA40× $\square-45,90$	SDA40× \square-135, 180
Zero stroke mass		0.55 [1.21]	0.71 [1.57]	1.10 [2.43]	1.34 [2.95]
Additional mass for each 1 mm .] stroke		0.0009 [0.0020]		0.0021 [0.0046]	
Mass of flange mounting bracket		0.17 [0.37]		0.23 [0.51]	
Mass of cylinder portion sensor switch	ZG5 $\square \square, \mathrm{CS} \square \mathrm{M}$	0.030 [0.066]			
	CS $\square \mathrm{F}$	0.060 [0.132]			
Mass of swing portion sensor switch	ZC1 $\square \square$	0.022 [0.049]			
	CS5T	0.022 [0.049]			
	CS11T	0.022 [0.049]			

※ The sensor switch mass is the mass of 1 sensor switch including a holder.
Calculation example: Mass of SDA25×50-90 with a flange mounting bracket and sensor switches (ZG530: 2 pcs., ZC130: 2 pcs.),
$0.55+(0.0009 \times 50)+0.17+(0.030 \times 2)+(0.022 \times 2)=0.869 \mathrm{~kg}[1.916 \mathrm{lb}$.

-Square rod end specification (-N)

Note: Drawings show SDA40.

Model Code	A	B	C	D	E	F	G	H	1	J	K	L	M	N
SDA25 $\times \square-45$, SDA25 $\times \square$-90	133	29	44	60	4	5	19	18	12	5	M8×1	90	44	34
SDA25 $\times \square$-135, SDA $25 \times \square$-180	133	29	44	60	4	5	19	18	12	5	M8×1	115	44	34
SDA40 $\times \square-45$, SDA40 $\times \square$-90	154	34	52	68	6	6	22	23	19	8	M14×1.5	112	54	41.5
SDA40 $\times \square$-135, SDA $40 \times \square$-180	154	34	52	68	6	6	22	23	19	8	M14×1.5	150	54	41.5

Model ${ }^{\text {a }}$ Code	P	Q	R	S	T	U	V	W	X	Y	$\mathbf{Z}^{\text {Note }}$
SDA25 $\times \square-45$, SDA25 $\times \square$-90	30	63	$\phi 8_{-0.022}^{0}$	M4×0.7 Depth6	18	26.4	7.4	20	38	45	11.6 (18.6)
SDA25 $\times \square$-135, SDA25 $\times \square$-180	30	88	$\phi 8_{-0.022}^{0}$	M4×0.7 Depth6	18	26.4	7.4	20	38	45	11.6 (18.6)
SDA40 $\times \square-45$, SDA40 $\times \square$-90	36	83	$\phi 15^{15} 0.027$	M6×1 Depth8	25	41.6	13	32	48	64	11.2 (18.2)
SDA40 $\times \square$-135, SDA40 $\times \square$-180	36	121	$\phi 15{ }_{-0.027}^{0}$	M6×1 Depth8	25	41.6	13	32	48	64	11.2 (18.2)

Model Code	AD	AE	AF	AG	AH	AJ	AP	AQ
SDA25 $\times \square-45$, SDA25 $\times \square$-90	25	25	42	8	22	-	M5×0.8 Depth10	ϕ 6.6 Counterbore $\phi 11$ Depth6.3
SDA25 $\times \square$-135, SDA25 $\times \square$-180	25	25	42	8	22	-	M5 $\times 0.8$ Depth10	ϕ 6.6 Counterbore $\phi 11$ Depth6.3
SDA40 $\times \square-45$, SDA40 $\times \square-90$	38	38	54	11	27	30	M6×1 Depth10	ϕ 6.6 Counterbore $\phi 11$ Depth6.3
SDA40 $\times \square$-135, SDA $40 \times \square-180$	38	38	54	11	27	30	M6×1 Depth10	ϕ 6.6 Counterbore $\phi 11$ Depth6.3

Note : Figures in parentheses () are for -45 and -135 models.

With flange mounting bracket

CAD Swing angle $45^{\circ}, 90^{\circ}$: SDA | Bore size |
| :--- |
| Can |

Note: Drawings show SDA40.

Model Code	A	B	C	D	E	F	G	H	1	J	K	L	M	N
SDA25 $\times \square-45$, SDA25 $\times \square$-90	133	29	44	60	4	5	19	18	12	5	M8×1	90	44	34
SDA25 $\times \square$-135, SDA25 $\times \square$-180	133	29	44	60	4	5	19	18	12	5	M8×1	115	44	34
SDA40 $\times \square-45$, SDA40 $\times \square$-90	154	34	52	68	6	6	22	23	19	8	M14×1.5	112	54	41.5
SDA40 $\times \square$-135, SDA40 $\times \square$-180	154	34	52	68	6	6	22	23	19	8	M14×1.5	150	54	41.5

Model Code	P	Q	R	S	T	U	V	X	Y	$\mathbf{Z}^{\text {Note }}$
SDA25 $\times \square-45$, SDA25 $\times \square$-90	30	63	$\phi 8{ }_{-0.022}$	M4×0.7 Depth6	18	26.4	7.4	38	45	11.6 (18.6)
SDA25 $\times \square$-135, SDA25 $\times \square$-180	30	88	$\phi 8{ }_{-0.022}^{0}$	M4×0.7 Depth6	18	26.4	7.4	38	45	11.6 (18.6)
SDA40 $\times \square-45$, SDA40 $\times \square$-90	36	83	$\phi 15{ }_{-0.027}^{0}$	M6×1 Depth8	25	41.6	13	48	64	11.2 (18.2)
SDA40 $\times \square-135$, SDA40 $\times \square$-180	36	121	$\phi 15{ }_{-0.027}^{0}$	M6×1 Depth8	25	41.6	13	48	64	11.2 (18.2)

Code	BC	BD	BE	BF	BG	BH	BP
Model	SDA25 $\times \square$-45, SDA25 $\times \square$-90	44	30	75	60	21	37.5
SDA25 $\times \square$-135, SDA25 $\times \square-180$	44	30	75	60	21	37.5	$\phi 5.5$ Counterbore $\phi 9.5$ Depth5.4
SDA40 $\times \square$-45, SDA40 $\times \square$-90	54	40	90	70	26	45	$\phi 6.5$ Counterbore $\phi 9.5$ Depth5.4 $\phi 11$ Depth6.5
SDA40 $\times \square$-135, SDA40 $\times \square-180$	54	40	90	70	26	45	$\phi 6.5$ Counterbore $\phi 11$ Depth6.5

[^1]
SENSOR SWITCHES

Solid State Type, Reed Switch Type

Minimum Cylinder Stroke When Mounting Sensor Switches

Minimum cylinder stroke for sensor switch mounting

Sensor switch model	Mounting 2 pcs.		Mounting 1 pc.
	On straight line	When position is staggered	
$\begin{aligned} & \text { ZG530 } \\ & \text { ZG553 } \end{aligned}$	20	15	15
CS $\square \mathrm{M}$	20	15	15
CS $\square \mathrm{F}$	44	21	15

- Mounting

1 pc.

- Mounting 2 pcs.

- When mounting straight

When mounting on the staggered position

Order Codes for Sensor Switches

Swing portion (with mounting bracket)			Sensor switch model	Lead wire length	Basic type	Bore size
Solid state type 2-lead wire	with indicator lamp	DC10~28V	ZC130	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	-SDA	25 .]
Solid state type 3-lead wire	with indicator lamp	DC4.5~28V	ZC153			
Reed switch type 2- lead wire	without indicator lamp	$\begin{aligned} & \text { DC5~28V } \\ & \text { AC85~115V } \end{aligned}$	CS5T			40 .]
Reed switch type 2-lead wire	with indicator lamp	DC10~28V	CS11T			
Cylinder portion (with mounting bracket)						
			Sensor switch model	Lead wire length	Basic type	Bore size
Solid state type 2-lead wire	with indicator lamp	DC10~28V	ZG530		-SDA	25 .]
Solid state type 3-lead wire	with indicator lamp	DC4.5~28V	ZG553			
Reed switch type 2-lead wire	with indicator lamp	$\begin{aligned} & \text { DC10~30V } \\ & \text { AC85~230V } \end{aligned}$	CS3M			
Reed switch type 2-lead wire	with indicator lamp	$\begin{aligned} & \text { DC10~28V } \\ & \text { AC85~115V } \end{aligned}$	CS4M			
Reed switch type 2-lead wire	with indicator lamp	$\begin{aligned} & \hline \text { DC3~30V } \\ & \text { AC85~115V } \end{aligned}$	CS5M			
Reed switch type	with indicator lamp	AC85~230V	CS2F	-	-S	40 .]
Reed switch type	with indicator lamp	DC10~30V	CS3F	-		
Reed switch type	with indicator lamp	DC10~30V	CS4F	-		
Reed switch type	without indicator lamp	DC3~30V	CS5F	-		

Order codes for mounting bracket only (Swing portion)

Basic cylinder type
Sensor type
Solid state type sensor switches (ZC130, ZC153)
Reed switch type sensor switches (CS5T, CS11T)

- Order codes for mounting strap only (Cylinder portion)

Basic cylinder type
SDA : For CS \square M, ZG5 $\square \square$
S: For CS $\square \mathbf{F}$
Sensor type
G5 : For CS $\square \mathbf{M}, \mathbf{Z G 5} \square \square$
F: For CS $\square \mathbf{F}$

Operating range: ℓ
The distance the piston travels in one direction, while the switch is in the ON position.

Response differential: C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

- Cylinder portion
mm [in.]

Sensor switch model	$\mathbf{C S} \square \mathbf{M}$	ZG5 $\square \square$	$\mathbf{C S} \square \mathbf{F}$
Operating range $: \ell$	$7 \sim 10.5[0.276 \sim 0.413]$	$2.5 \sim 4.2[0.098 \sim 0.165]$	$8 \sim 12[0.315 \sim 0.472]$
Response differential : C	$1[0.039] \mathrm{MAX}$.	$0.7[0.028] \mathrm{MAX}$.	$1.5[0.059] \mathrm{MAX}$.
Maximum sensing location	$11[0.433]$ Note1	$11[0.433]$ Note1	$16[0.630]$ Note2

Notes: 1 . This is the length measured from the switch's opposite end side to the lead wire. 2. This is the length measured from the connector side end surface.
-Swing portion
mm [in.]

Sensor switch model	CS5T	CS11T	ZC1 $\square \square$
Operating range : ℓ	$7 \sim 9.5[0.276 \sim 0.374]$		$2.5 \sim 4[0.098 \sim 0.157]$
Response differential : C	$1.5[0.059] \mathrm{MAX}$		$0.2[0.008] \mathrm{MAX}$.
Maximum sensing location Note	$7[0.276]$	$10.5[0.413]$	$8.5[0.335]$

Note: This is the length measured from the switch's opposite end side to the lead wire.

Dimensions (mm)

Cylinder portion

CS $\square \mathbf{F}$

Swing portion

[^0]: Supplying air to connection port A swings it to the direction A，and turns ON sensor switch A．On the other

[^1]: Note : Figures in parentheses () are for -45 and -135 models.

