Square body demonstrates powerful downsizing capacity.

JIG CYLINDERS C SERIES

Ritcily sibundime sertes of 9 difiterent types amd 69 models

A rich series configuration spanning from $\phi 6$ [0.236in.] to $\boldsymbol{\phi} 100$ [3.940in.] responds to diverse needs far better than previous thin type cylinders.
Moreover, Non-ion specification is also available as standard.
(Excludes $\boldsymbol{\phi} 6$ [0.236in.], $\phi 8$ [0.315in.], and $\boldsymbol{\phi} 10$ [0.394in.])

Provides powerful back-lp for device minitaturketion

Exhibits no protrusions in its external shape even after a sensor switch has been mounted, for easy mounting in tight spaces.
This cylinder is one step up on cylinders of the same class in terms of size, mass, and performance.

New Line-Up Includes $\boldsymbol{\phi} 6$ [0.236in.], $\boldsymbol{\phi} 8$ [0.315in.], and $\boldsymbol{\phi} 10$ [0.394in.]

For a greater selection in response to needs for miniaturization, 3 new bore sizes at $\phi 6, \phi 8$, and $\phi 10$ have been added, increasing the range of sizes to choose from.

The Jig Gylinders C Series Includes the 9 Types Shown Below.

Lateral Load Resistant Cylinders
p. 180

Mounting Brackets

\square Sensor Switches
p. 199

Tandem Cylinders
p. 161

Long Stroke Cylinders
p. 185

Select a suitable bore size considering the load and air pressure to obtain the required thrust.
Since the figures in the table are calculated values, select a bore size that results in a load ratio (load ratio $=\frac{\text { Load }}{\text { Calculated value }}$) of 70%
or less $(50 \%$ or less for high speed).

Double acting type									N [lbf.]				
Bore size mm [in.]	Piston rod diameter mm [in.]	Operation	Pressure area mm^{2} [in?]	Air pressure MPa [psi.]									
				0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
6 [0.236]	4 [0.157]	Push side	28.3 [0.0439]	2.8 [0.63]	5.7 [1.28]	8.5 [1.91]	11.3 [2.54]	14.1 [3.17]	17.0 [3.82]	19.8 [4.45]	22.6 [5.08]	25.4 [5.71]	-
		Pull side	15.7 [0.0243]	1.6 [0.36]	3.1 [0.7]	4.7 [1.06]	6.3 [1.42]	7.9 [1.78]	9.4 [2.11]	11.0 [2.47]	12.6 [2.83]	14.1 [3.17]	-
8 [0.315]	5 [0.197]	Push side	50.3 [0.0780]	5.0 [1.12]	10.1 [2.27]	15.1 [3.39]	20.1 [4.52]	25.1 [5.64]	30.2 [6.79]	35.2 [7.91]	40.2 [9.04]	45.2 [10.2]	-
		Pull side	30.6 [0.0474]	3.1 [0.70]	6.1 [1.37]	9.2 [2.07]	12.3 [2.77]	15.3 [3.44]	18.4 [4.14]	21.4 [4.81]	24.5 [5.51]	27.6 [6.20]	-
10 [0.394]	5 [0.197]	Push side	78.5 [0.1217]	7.9 [1.78]	15.7 [3.53]	23.6 [5.31]	31.4 [7.06]	39.3 [8.83]	47.1 [10.6]	55.0 [12.4]	62.8 [14.1]	70.7 [15.9]	-
		Pull side	58.9 [0.0913]	5.9 [1.33]	11.8 [2.65]	17.7 [3.98]	23.6 [5.31]	29.5 [6.63]	35.3 [7.94]	41.2 [9.26]	47.1 [10.6]	53.0 [11.9]	-
12 [0.472]	6 [0.236]	Push side	113.0 [0.175]	11.3 [2.54]	22.6 [5.08]	33.9 [7.62]	45.2 [10.2]	56.5 [12.7]	67.8 [15.2]	79.1 [17.8]	90.4 [20.3]	101.7 [22.86]	113.0 [25.40]
		Pull side	84.8 [0.131]	8.5 [1.91]	17.0 [3.82]	25.4 [5.71]	33.9 [7.62]	42.4 [9.53]	50.9 [11.4]	59.3 [13.3]	67.8 [15.2]	76.3 [17.2]	84.8 [19.1]
16 [0.630]	8 [0.315]	Push side	201.0 [0.312]	20.1 [4.52]	40.2 [9.04]	60.3 [13.6]	80.4 [18.1]	100.5 [22.59]	120.6 [27.11]	140.7 [31.63]	160.8 [36.15]	180.9 [40.67]	201.0 [45.18]
		Pull side	150.0 [0.233]	15.1 [3.39]	30.1 [6.77]	45.2 [10.2]	60.3 [13.6]	75.4 [16.9]	90.4 [20.3]	105.5 [23.72]	120.6 [27.11]	135.6 [30.48]	150.7 [33.88]
20 [0.787]	10 [0.394]	Push side	314.0 [0.487]	31.4 [7.06]	62.8 [14.1]	94.2 [21.2]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]
		Pull side	235.5 [0.365]	23.6 [5.31]	47.1 [10.6]	70.7 [15.9]	94.2 [21.2]	117.8 [26.48]	141.3 [31.76]	164.9 [37.07]	188.4 [42.35]	212.0 [47.66]	235.5 [52.94]
25 [0.984]	12 [0.472]	Push side	490.6 [0.760]	49.1 [11.0]	98.1 [22.1]	147.2 [33.09]	196.3 [44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.23]	441.6 [99.27]	490.6 [110.3]
		Pull side	377.6 [0.585]	37.8 [8.50]	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.88]
32 [1.260]	16 [0.630]	Push side	803.8 [1.246]	80.4 [18.1]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]
		Pull side	602.9 [0.934]	60.3 [13.6]	120.6 [27.11]	180.9 [40.67]	241.2 [54.22]	301.4 [67.75]	361.7 [81.31]	422.0 [94.87]	482.3 [108.4]	542.6 [122.0]	602.9 [135.5]
40 [1.575]	16 [0.630]	Push side	1256.0 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]
		Pull side	1055.0 [1.635]	105.5 [23.72]	211.0 [47.43]	316.5 [71.15]	422.0 [94.87]	527.5 [118.6]	633.0 [142.3]	738.5 [166.0]	844.0 [189.7]	949.5 [213.4]	1055.0 [237.2]
50 [1.969]	20 [0.787]	Push side	1962.5 [3.042]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]
		Pull side	1648.5 [2.555]	164.9 [37.07]	329.7 [74.12]	494.6 [111.2]	659.4 [148.2]	824.3 [185.3]	989.1 [222.3]	1154.0 [259.4]	1318.8 [296.5]	1483.7 [333.5]	1648.5 [370.6]
63 [2.480]	20 [0.787]	Push side	3115.7 [4.829]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]
		Pull side	2801.7 [4.343]	280.2 [62.99]	560.3 [126.0]	840.5 [188.9]	1120.7 [251.9]	1400.8 [314.9]	1681.0 [377.9]	1961.2 [440.9]	2241.3 [503.8]	2521.5 [566.8]	2801.7 [629.8]
80 [3.150]	25 [0.984]	Push side	5024.0 [7.787]	502.4 [112.9]	1004.8 [225.9]	1507.2 [338.8]	2009.6 [451.8]	2512.0 [564.7]	3014.4 [677.6]	3516.8 [790.6]	4019.2 [903.5]	4521.6 [1016.5]	5024.0 [1129.4]
		Pull side	4533.4 [7.027]	453.3 [101.9]	906.7 [203.8]	1360.0 [305.7]	1813.4 [407.7]	2266.7 [509.6]	2720.0 [611.5]	3173.4 [713.4]	3626.7 [815.3]	4080.0 [917.2]	4533.4 [1019.1]
100 [3.940]	32 [1.181]	Push side	7850.0 [12.168]	785.0 [176.5]	1570.0 [352.9]	2355.0 [529.4]	3140.0 [705.9]	3925.0 [882.3]	4710.0 [1058.8]	5495.0 [1235.3]	6280.0 [1411.7]	7065.0 [1588.2]	7850.0 [1764.7]
		Pull side	7046.2 [10.922]	704.6 [158.4]	1409.2 [316.8]	2113.8 [475.2]	2818.5 [633.6]	3523.1 [792.0]	4227.7 [950.4]	4932.3 [1108.8]	5636.9 [1267.2]	6341.5 [1425.6]	7046.2 [1584.0]

Single acting push type Single acting pull type N [lbf.]													
Operation type	Bore size mm [in.]	Piston rod diameter mm [in.]	Pressure area mm^{2} [in.]	Air pressure									
				0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
Single acting push type	6 [0.236]	4 [0.157]	28.3 [0.0439]	-	-	5.6 [1.26]	8.4 [1.89]	11.2 [2.52]	14.1 [3.17]	16.9 [3.80]	19.7 [4.43]	22.5 [5.06]	-
	8 [0.315]	$5[0.197]$	50.3 [0.0780]	-	-	10.4 [2.34]	15.4 [3.46]	20.4 [4.59]	25.5 [5.73]	30.5 [6.86]	35.5 [7.98]	40.5 [9.10]	-
	10 [0.394]	5 [0.197]	$78.5[0.1217]$	-	-	18.9 [4.25]	26.7 [6.00]	34.6 [7.78]	42.4 [9.53]	50.3 [11.3]	58.1 [13.1]	66.0 [14.8]	-
	12 [0.472]	6 [0.236]	113.0 [0.175]	-	12.8 [2.88]	24.1 [5.42]	35.4 [7.96]	46.7 [10.5]	58.0 [13.0]	69.3 [15.6]	80.6 [18.1]	91.9 [20.7]	103.2 [23.20]
	16 [0.630]	$6[0.236]$	201.0 [0.312]	-	26.1 [5.87]	46.2 [10.4]	66.3 [14.9]	86.4 [19.4]	106.5 [23.94]	126.6 [28.46]	146.7[32.98]	166.8 [37.50]	186.9 [42.02]
	20 [0.787]	8 [0.315]	314.0 [0.487]	-	49.0 [11.0]	80.4 [18.1]	111.8 [25.13]	143.2 [32.19]	174.6 [39.25]	206.0 [46.31]	237.4 [53.37]	268.8 [60.43]	300.2 [67.48]
	25 [0.984]	10 [0.394]	490.6 [0.760]	-	76.3 [17.2]	125.4 [28.19]	174.5 [39.23]	223.5 [50.24]	272.6 [61.28]	321.6 [72.30]	370.7 [83.33]	419.8 [94.37]	468.8 [105.4]
	32 [1.260]	12 [0.472]	803.8 [1.246]	-	123.4 [27.74]	203.8 [45.81]	284.1 [63.87]	364.5 [81.94]	444.9 [100.0]	525.3 [118.1]	605.7 [136.2]	686.1 [154.2]	766.4 [172.3]
	40 [1.575]	16 [0.630]	1256.0 [1.947]	-	205.9 [46.29]	331.5 [74.52]	457.1 [102.8]	582.7 [131.0]	708.3 [159.2]	833.9 [187.5]	959.5 [215.7]	1085.1 [243.9]	1210.5 [272.1]
	50 [1.969]	$20[0.787]$	1962.5[3.042]	141.0[31.70]	337.2 [75.80]	$533.5[119.9]$	729.7 [164.0]	926.0 [208.2]	1122.2 [252.3]	1318.5 [296.4]	1514.7 [340.5]	1711.0 [384.6]	1907.2[428.7]
Single acting pull type	6 [0.236]	4 [0.157]	15.7 [0.0243]	-	-	1.8 [0.40]	$3.4[0.76]$	5.0 [1.12]	6.5 [1.46]	8.1 [1.82]	9.7 [2.18]	11.2 [2.52]	-
	8 [0.315]	5 [0.197]	30.6 [0.0474]	-	-	4.5 [1.01]	7.6 [1.71]	10.6 [2.38]	13.7 [3.08]	16.7 [3.75]	19.8 [4.45]	22.9 [5.15]	-
	10 [0.394]	5 [0.197]	58.9 [0.0913]	-	-	13.0 [2.92]	18.9 [4.25]	24.8 [5.58]	30.6 [6.88]	36.5 [8.21]	42.4 [9.53]	48.3 [10.9]	-
	12 [0.472]	6 [0.236]	84.8 [0.131]	-	7.2 [1.62]	15.6 [3.51]	24.1 [5.42]	32.6 [7.33]	41.1 [9.24]	49.5 [11.1]	58.0 [13.0]	66.5 [14.9]	75.0 [16.9]
	16 [0.630]	6 [0.236]	150.7 [0.234]	-	16.0 [3.60]	31.1 [6.99]	46.2 [10.4]	61.3 [13.8]	76.3 [17.2]	91.4 [20.5]	106.5 [23.94]	121.5 [27.31]	136.6 [30.71]
	20 [0.787]	8 [0.315]	$235.5[0.365]$	-	33.3 [7.49]	56.9 [12.8]	80.4 [18.1]	104.0 [23.38]	127.5 [28.66]	151.1 [33.97]	174.6 [39.25]	198.2 [44.56]	221.7 [49.84]
	25 [0.984]	10 [0.394]	377.6 [0.585]	-	75.5 [17.0]	113.3 [25.47]	151.0 [33.94]	188.8 [42.44]	226.6 [50.94]	264.3 [59.41]	302.1 [67.91]	339.8 [76.39]	377.6 [84.88]
	32 [1.260]	12 [0.472]	602.9 [0.934]	-	61.4 [13.8]	121.7 [27.36]	182.0 [40.91]	242.2 [54.45]	302.5 [68.00]	362.8 [81.56]	423.1 [95.11]	483.4 [108.7]	543.7 [122.2]
	40 [1.575]	16 [0.630]	1055.0 [1.635]	-	165.7 [37.25]	271.2 [60.97]	376.7 [84.68]	482.2 [108.4]	587.7 [132.1]	693.2 [155.8]	798.7 [179.5]	904.2 [203.3]	1009.7 [227.0]
	50 [1.969]	20 [0.787]	1648.5 [2.555]	109.6 [24.64]	274.4 [61.69]	439.3 [98.75]	604.1 [135.8]	769.0 [172.9]	933.8 [209.9]	1098.7 [247.0]	1263.5 [284.0]	1428.4 [321.1]	1593.2 [358.2]

Spring return force

Bore size mm	Stroke mm	Zero stroke	End of stroke
6	$\begin{array}{r} \times 5 \\ \times 10 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 2.1[0.47] \\ 1.2[0.27] \\ \hline \end{array}$	2.9 [0.65]
8	$\begin{array}{r} \times 5 \\ \times 10 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3.3[0.74] \\ 1.9[0.43] \\ \hline \end{array}$	4.7 [1.06]
10	$\begin{array}{r} \times 5 \\ \times 10 \\ \hline \end{array}$	$\begin{aligned} & 3.3[0.74] \\ & 1.9[0.43] \\ & \hline \end{aligned}$	4.7 [1.06]
12	$\begin{aligned} & \times 5 \\ & \times 10 \\ & \times 15 \\ & \times 20 \\ & \times 25 \\ & \times 30 \end{aligned}$	$7.7[1.73]$ $5.7[1.28]$ $3.7[0.83]$ $5.7[1.28]$ $4.7[1.06]$ $3.7[0.83]$	9.8 [2.20]
16	$\begin{array}{r} \times 5 \\ \times 10 \\ \times 15 \\ \times 20 \\ \times 25 \\ \times 30 \\ \hline \end{array}$	$\begin{aligned} & 11.1[2.50] \\ & 8.2[1.84] \\ & 5.3[1.19] \\ & 8.2[1.84] \\ & 6.7[1.51] \\ & 5.3[1.19] \\ & \hline \end{aligned}$	14.1 [3.17]
20	$\begin{aligned} & \times 5 \\ & \times 10 \\ & \times 15 \\ & \times 20 \\ & \times 25 \\ & \times 30 \end{aligned}$	$11.6[2.61]$ $9.5[2.14]$ $7.3[1.64$ $9.5[2.14]$ $8.4[1.89$ $7.3[1.64]$	13.8 [3.10]

How to read the thrust table

1. For the thrust of the double rod cylinder double acting type, see the pull side of the double acting type thrust table. For the thrust of the single acting type, see the single acting pull type thrust table.
2. The thrust of the tandem cylinder is double that of the standard type when air is supplied simultaneously to Port A and Port B, for any operation type before the stroke in Cylinder 1 is complete. When air is supplied to any of Ports A, B, or C alone, then the thrust is the same as for the standard type.

3. The thrust for dual stroke cylinders is the same as for the standard type, for any operation type.
4. When directly carrying a load, care must be exercised of a lateral load.
For details, see p. 206 "Lateral Load."

-Square rod cylinders

Bore size mm [in.]	$\begin{gathered} \hline \text { Piston rod } \\ \text { size } \\ \text { mm [in.] } \\ \hline \end{gathered}$	Operation	Pressure area mm^{2} [in.]	Air pressure MPa									
				0.1 [15]	0.2 [29]	0.3 [44]	0.4 [58]	0.5 [73]	0.6 [87]	0.7 [102]	0.8 [116]	0.9 [131]	1.0 [145]
20 [0.787]	$\begin{gathered} \square 7.4 \\ {[\square 0.291]} \end{gathered}$	Push side	314.0 [0.487]	31.4 [7.06]	62.8 [14.1]	94.2 [21.2]	125.6 [28.23]	157.0 [35.29]	188.4 [42.35]	219.8 [49.41]	251.2 [56.47]	282.6 [63.53]	314.0 [70.59]
		Pull side	259.2 [0.402]	25.9 [5.82]	51.8 [11.6]	77.8 [17.5]	103.7 [23.3]	129.6 [29.13]	155.5 [34.96]	181.5[40.80]	207.4 [46.62]	233.3 [52.45]	259.2 [58.27]
25 [0.984]		Push side	490.6 [0.760]	49.1 [11.0]	98.1 [22.1]	147.2 [33.09]	196.3[44.13]	245.3 [55.14]	294.4 [66.18]	343.4 [77.20]	392.5 [88.23]	441.6 [99.27]	490.6 [110.3]
		Pull side	435.9 [0.676]	43.6 [9.80]	87.2 [19.6]	130.8 [29.40]	174.3 [39.18]	217.9 [48.98]	261.5 [58.79]	305.1 [68.59]	348.7 [78.39]	392.3 [88.19]	435.9 [97.99]
32 [1.260]	$\begin{gathered} \square 13 \\ \square 0.512] \end{gathered}$	Push side	803.8 [1.246]	80.4 [18.1]	160.8 [36.15]	241.2 [54.22]	321.5 [72.27]	401.9 [90.35]	482.3 [108.4]	562.7 [126.5]	643.1 [144.6]	723.5 [162.6]	803.8 [180.7]
		Pull side	634.8 [0.984]	63.5 [14.3]	127.0 [28.55]	190.5 [42.82]	253.9 [57.08]	317.4 [71.35]	380.9 [85.63]	444.4 [99.90]	507.9 [114.2]	571.4 [128.5]	634.8 [142.7]
40 [1.575]		Push side	1256.0 [1.947]	125.6 [28.23]	251.2 [56.47]	376.8 [84.70]	502.4 [112.9]	628.0 [141.2]	753.6 [169.4]	879.2 [197.6]	1004.8 [225.9]	1130.4 [254.1]	1256.0 [282.3]
		Pull side	1087.0 [1.685]	108.7 [24.44]	217.4 [48.87]	326.1 [73.31]	434.8 [97.74]	543.5 [122.2]	652.2 [146.6]	760.9 [171.1]	869.6 [195.5]	978.3 [219.9]	1087.0 [244.4]
50 [1.969]	$\begin{gathered} \square 18 \\ {[\square 0.709]} \end{gathered}$	Push side	1962.5 [3.042]	196.3 [44.13]	392.5 [88.23]	588.8 [132.4]	785.0 [176.5]	981.3 [220.6]	1177.5 [264.7]	1373.8 [308.8]	1570.0 [352.9]	1766.3 [397.1]	1962.5 [441.2]
		Pull side	1638.5 [2.540]	163.9 [36.84]	327.7 [73.67]	491.6 [110.5]	655.4 [147.3]	819.3 [184.2]	983.1 [221.0]	1147.0 [257.8]	1310.8 [294.7]	1474.7 [331.5]	1638.5 [368.3]
63 [2.480]		Push side	3115.7 [4.829]	311.6 [70.05]	623.1 [140.1]	934.7 [210.1]	1246.3 [280.2]	1557.8 [350.2]	1869.4 [420.2]	2181.0 [490.3]	2492.5 [560.3]	2804.1 [630.4]	3115.7 [700.4]
		Pull side	2791.7 [4.327]	279.2 [62.76]	558.3 [125.5]	837.5 [188.3]	1116.7 [251.0]	1395.8 [313.8]	1675.0 [376.5]	1954.2 [439.3]	2233.3 [502.0]	2512.5 [564.8]	2791.7 [627.6]

JIG CYLINDERS C SERIES TANDEM CYLINDERS

Double Acting Type, Single Acting Push Type

Symbols

Double acting type

Single acting push type

Specifications

Item Bore size mm [in.]		$\begin{array}{\|c\|} \hline 12 \\ {[0.472]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 16 \\ {[0.630]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \\ {[0.787]} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 25 \\ {[0.984]} \\ \hline \end{array}$	$\begin{gathered} 32 \\ {[1.260]} \end{gathered}$	$\begin{gathered} 40 \\ {[1.575]} \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ {[1.969]} \end{gathered}$	$\begin{array}{\|c\|} \hline 63 \\ {[2.480]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 80 \\ {[3.150]} \end{array}$	$\begin{gathered} 100 \\ {[3.940]} \\ \hline \end{gathered}$
Operation type		Double acting type, Single acting push type							Double acting type		
Media		Air									
Operating pressure range MPa [psi	Double acting type	$\begin{gathered} 0.2 \sim 1.0 \\ {[29 \sim 145]} \end{gathered}$						$\begin{gathered} 0.1 \sim 1.0 \\ {[15 \sim 145]} \end{gathered}$			
	Si.] $\begin{array}{l}\text { Single } \\ \text { acting type }\end{array}$	$\begin{gathered} 0.3 \sim 1.0 \\ {[44 \sim 145]} \end{gathered}$						$\left[\begin{array}{c} 0.2 \sim 1.0 \\ {[29 \sim 145]} \end{array}\right]$	-		
Proof pressure MPa [psi.]		1.5 [218]									
Operating temperature range ${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$		0~60 [32~140] (The heat resistant specification is 120 [248]. Note1)									
Operating speed range mm / s [in.sec.]	Double acting type	30~500 [1.2~19.7]						$30 \sim 300$ [1.2~11.8]			
	Single acting type	$100 \sim 500$ [3.9~19.7]						$\underbrace{}_{\substack{100 \sim 300 \\[3, ~ \sim 1.8]}}$		-	
Cushion	Double acing type	Rubber bumper (Option Note2)									
	Single acting type	None							-		
Lubrication		Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.)									
Port size		M 5×0.8				Rc1/8		Rc1/4		Rc3/8	

Operation of Tandem Cylinders

Tandem Cylinders are a set of 2 cylinders joined end to end.
It can be used as a two-stage stroke cylinder by supplying air to either Port A or Port B. It can also obtain twice the thrust within the "stroke I" range.

The rods retract strokes II and I when air is supplied from Port ©.

The rod moves stroke I when air is supplied from Port (A).

The rod moves stroke II when air is supplied from Port (B).

Twice the thrust is obtained within the stroke I range
when air is supplied from Ports (A) and (B).

Remark: For Handling Instructions and Precautions, see p. 205.
Notes: 1. For heat resistant specification, consult us.
2. Not available for heat resistant specification.

Bore Size and Stroke

For non-standard strokes, see p.206.													
Operation type		5	10	15	20	25	30	35	40	45	50	75	100
	12, 16	$\begin{gathered} 0,5,10 \\ 15,20,25 \end{gathered}$	$\begin{aligned} & 0,5,10 \\ & 15,20 \end{aligned}$	0,5,10,15	0,5,10	0,5	0	-	-	-	-	-	-
Double acting	20, 25	$\begin{array}{\|l} \hline 0,5,10,15 \\ 20,25,30 \\ 35,40,45 \end{array}$	$\begin{gathered} 0,5,10,15 \\ 20,25,30 \\ 35,40 \end{gathered}$	$\begin{gathered} 0,5,10 \\ 15,20,25 \\ 30,35 \end{gathered}$	$\begin{aligned} & 0,5,10,15 \\ & 20,25,30 \end{aligned}$	$\begin{gathered} 0,5,10 \\ 15,20,25 \end{gathered}$	$\begin{aligned} & 0,5,10 \\ & 15,20 \end{aligned}$	0,5,10,15	0,5,10	0,5	0	-	-
type CDAT CDATS	32, 40	$\begin{array}{\|c\|} \hline 0,5,10,15 \\ 20,25,30,35 \\ 40,45,70,95 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0,5,10,15 \\ 20,25,30,35 \\ 40,65,90 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0,5,10,15 \\ 20,25,30 \\ 35,60,85 \\ \hline \end{array}$	$\begin{gathered} \hline 0,5,10,15 \\ 20,25,30 \\ 55,80 \\ \hline \end{gathered}$	$\begin{gathered} 0,5,10 \\ 15,20,25 \\ 50,75 \\ \hline \end{gathered}$	$\begin{aligned} & 0,5,10 \\ & 15,20 \\ & 45,70 \\ & \hline \end{aligned}$	$\begin{gathered} 0,5,10,15 \\ 40,65 \end{gathered}$	$\begin{aligned} & 0,5,10 \\ & 35,60 \end{aligned}$	0,5,30,55	0,25,50	0,25	0
	$\begin{array}{cc} 50, & 63 \\ 80, & 100 \end{array}$	-	$\begin{array}{\|c\|} \hline 0,5,10,15 \\ 20,25,30,35 \\ 40,65,90 \\ \hline \end{array}$	$\begin{aligned} & 0,5,10,15 \\ & 20,25,30 \\ & 35,60,85 \end{aligned}$	$\begin{gathered} 0,5,10,15 \\ 20,25,30 \\ 55,80 \end{gathered}$	$\begin{gathered} 0,5,10 \\ 15,20,25 \\ 50,75 \end{gathered}$	$\begin{aligned} & 0,5,10,15 \\ & 20,45,70 \end{aligned}$	$\begin{gathered} 0,5,10,15 \\ 40,65 \end{gathered}$	$\begin{aligned} & 0,5,10 \\ & 35,60 \end{aligned}$	0,5,30,55	0,25,50	0,25	0
Single acting type	$\begin{array}{\|lll\|} \hline 12, & 16, & 20 \\ 25, & 32, & 40 \\ \hline \end{array}$	$\begin{gathered} 0,5,10 \\ 15,20,25 \end{gathered}$	$\begin{aligned} & 0,5,10 \\ & 15,20 \\ & \hline \end{aligned}$	0,5,10,15	0,5,10	0,5	0	-	-	-	-	-	-
$\begin{aligned} & \text { CSAT } \\ & \text { CSATS } \end{aligned}$	50	-	$\begin{aligned} & 0,5,10,15 \\ & 20,25,30 \end{aligned}$	$\begin{gathered} 0,5,10 \\ 15,20,25 \end{gathered}$	$\begin{aligned} & 0,5,10 \\ & 15,20 \end{aligned}$	0,5,10,15	0,5,10	0,5	0	-	-	-	-

Remarks: 1. Stroke tolerance: Stroke 1 side ${ }_{-0.2}^{+1}\left[{ }_{-0.008 i n}^{+0.039 i n}\right.$.], stroke 2 side ${ }_{0}^{+1}\left[{ }_{0}^{+0.039 i n}\right.$.]
2. The figures in the table are combinations of stroke 2 (standard) responding to stroke 1 (standard).
3. In most cases, body cutting is used for the non-standard strokes.

However, body cutting is not used for "Stroke 1" or "Stroke $1+$ Stroke 2" under the condition mentioned below. The collar packed is used for these cases.
$\phi 12 \sim \phi 40$: less than 5 mm
$\phi 50 \sim \phi 100$: less than 10 mm

Order Codes for Tandem Cylinders

Additional Parts (To be ordered separately)

Flange mounting
bracket
(p.198)

Mounting
screws
(p.209)

Double acting type (CDAT)

$\phi 12 \sim \phi 40$

$\phi 50 \sim \phi 100$

Single acting push type (CSAT)

Cylinder with magnet

With bumper

Tandem Cylinder Air Circuit Examples

When using a tandem cylinder as a 2-stage stroke cylinder, refer to the air circuits shown below. For application of other air circuits not shown below, consult us.

For mounting upward-facing cylinders

-For mounting downward-facing or horizontal cylinders

Major Parts and Materials

Parts Bore mm	$\phi 12$	$\phi 16$	$\phi 20$	$\phi 25$	$\phi 32$	¢ 40	¢ 50	$\phi 63$	$\phi 80$	$\phi 100$
Cylinder body	Aluminum alloy (anodized)									
Piston	Aluminum alloy (special rust prevention treatment)									
Piston rod	Stainless steel (chrome plated)				Steel (chrome plated)					
Seal	Synthetic rubber (NBR)									
Rod cover	Aluminum alloy (special wear-resistant treatment)									
Head cover	Aluminum alloy (anodized)									
Snap ring	Steel (phosphate coating)									
Spring	Piano wire								-	
Spacer	Aluminum alloy (special rust prevention treatment)								-	
Bumper	Synthetic rubber (NBR; urethane for $\phi 12$ only)									
Magnet	Plastic magnet									
Support	Aluminum alloy (special rust prevention treatment)									

Seals

Bore Parts mm	Rod seal	Piston seal	Tube gasket		}{}
			Rod side	Head side	

Note: Items in parentheses () are for the single acting type.

Mass

Double acting type

Bore size mm [in.]	Zero stroke mass Note1	Additional mass for each 1 mm .] of stroke1	Additional mass for each 1 mm .] of stroke2	Additional mass of cylinder with bumper	Additional mass of cylinder with magnet	Mass of mounting bracket	Additional mass of sensor switch Note2	
						Flange bracket	ZE $\square \square \square \mathbf{A}$	$\mathbf{Z E} \square \square \square \mathbf{B}$
12 [0.472]	44.26 [1.561]	2.68 [0.095]	1.28 [0.045]	13.39 [0.472]	13.73 [0.484]	55 [1.94]	15 [0.53]	35 [1.23]
16 [0.630]	61.11 [2.156]	3.34 [0.118]	1.62 [0.057]	16.71 [0.589]	20.41 [0.720]	71 [2.50]		
20 [0.787]	96.79 [3.414]	4.63 [0.163]	2.26 [0.080]	23.14 [0.816]	52.54 [1.853]	101 [3.56]		
25 [0.984]	147.69 [5.210]	6.41 [0.226]	3.11 [0.110]	32.05 [1.131]	76.92 [2.713]	160 [5.64]		
32 [1.260]	220.3 [7.771]	8.43 [0.297]	4.11 [0.145]	42.13 [1.486]	106.84 [3.769]	186 [6.56]		
40 [1.575]	345.12 [12.174]	9.85 [0.347]	4.77 [0.168]	0	141.38 [4.987]	335 [11.82]		
50 [1.969]	562.47 [19.840]	14.51 [0.512]	7.03 [0.248]	0	220.44 [7.776]	447 [15.77]		
63 [2.480]	890.99 [31.428]	17.83 [0.629]	8.69 [0.307]	0	322.44 [11.374]	591 [20.85]		
80 [3.150]	1770.07 [62.436]	26.91 [0.949]	13.06 [0.461]	0	497.9 [17.563]	1414 [49.88]		
100 [3.940]	3252 [114.7]	38.46 [1.357]	18.61 [0.656]	0	732.34 [25.832]	2606 [91.92]		

Notes: 1. The above table is for the standard strokes.
2. Sensor switch codes A and B show the lead wire lengths.

A: 1000 mm [39in.] B: 3000mm [118in.]
Calculation example: For the mass of a double acting type cylinder with magnet, bore size of $25 \mathrm{~mm}, 30 \mathrm{~mm}$
for stroke 1, 10mm for stroke2, and 2 sensor switches (ZE135A)
$147.69+(6.41 \times 30)+(3.11 \times 10)+76.92+(15 \times 2)=478.01 \mathrm{~g}[16.861 \mathrm{oz}$.

Single acting push type
g [oz.]

Bore size mm [in.]	Zero stroke mass Note1			Additional mass for each 1 mm .] of stroke1	Additional mass for each 1 mm .] of stroke2	Additional mass of cylinder with magnet	Mass of mounting bracket	Additional mass of sensor switch Note2	
	Stroke1								
	5~15 (ϕ 50: 10~20)		16~30 ($¢ 50: 21 \sim 40)$				Flange bracket	ZE $\square \square \square \mathbf{A}$	ZE $\square \square \square \mathbf{B}$
	Stroke 1+ Stroke 2								
	5~15 (ϕ 50: 10~20)	16~30 (ϕ 50: 21~40)							
12 [0.472]	55.88 [1.971]	69.98 [2.468]	85.21 [3.006]	2.68 [0.0945]	1.28 [0.0451]	16.11 [0.568]	55 [1.94]	15 [0.53]	35 [1.23]
16 [0.630]	80.31 [2.833]	99.64 [3.515]	120.1 [4.236]	3.34 [0.118]	1.62 [0.0571]	21.21 [0.748]	71 [2.50]		
20 [0.787]	96.88 [3.417]	124.84 [4.404]	153.93 [5.430]	4.63 [0.163]	2.26 [0.0797]	51.89 [1.830]	101 [3.56]		
25 [0.984]	147.45 [5.201]	186 [6.561]	226.53 [7.990]	6.41 [0.226]	3.11 [0.110]	80.18 [2.828]	160 [5.64]		
32 [1.260]	223.01 [7.866]	306.96 [10.828]	393.89 [13.894]	8.43 [0.297]	4.11 [0.145]	103.14 [3.638]	186 [6.56]		
40 [1.575]	345.03 [12.170]	453.44 [15.994]	566.48 [19.982]	9.85 [0.347]	4.77 [0.168]	141.93 [5.006]	335 [11.82]		
50 [1.969]	561.93 [19.821]	691.19 [24.381]	827.1 [29.175]	14.51 [0.512]	7.03 [0.248]	216.54 [7.638]	447 [15.77]		

Notes 1:The above table is for the standard strokes.
2: Sensor switch codes A and B show the lead wire lengths.
A: 1000 mm [39in.] B: 3000 mm [118in.]

Note: Mufflers, etc. are not included.
Install a muffler when using in places exposed to dust, etc.

- The drawing is for $\phi 12$.

$\begin{array}{ll} \hline \text { Bore } & \text { Type } \\ \text { mm } \mathrm{lin} \mathrm{\cdot]} & \text { Code } \\ \hline \end{array}$	Standard cylinder（CDAT）				Cylinder with magnet（CDATS）				Standard cylinder with bumper（CDAT－R）				Cylinder wiht magnet with bumper（CDATS－R）				D	E	K1	M	N_{1}	N_{2}	0
	A	B1	Co	C ${ }_{1}$	A	B1	C0	C ${ }_{1}$	A	B1	Co	C_{1}	A	B1	Co	C_{1}							
12 ［0．472］	39	5	34	17	49	5	44	22	49	5	44	22	59	5	54	27	－	－	M3X0．5 Depplf	3.5	8	5	M5 $\times 0.8$
16 ［0．630］	39.5	5.5	34	17	49.5	5.5	44	22	49.5	5.5	44	22	59.5	5.5	54	27	－	6.2	M4x0．7 Deppr	3.5	8	5	M5 $\times 0.8$
20 ［0．787］	44.5	5.5	39	19.5	64.5	5.5	59	29.5	54.5	5.5	49	24.5	74.5	5.5	69	34.5	－	12.2	W5X0．Dopptio	4.5	9.5	5	M5 $\times 0.8$
25 ［0．984］	48	6	42	21	68	6	62	31	58	6	52	26	78	6	72	36	－	12.2	M6X1 Depprio	5	10.5	5	M5 $\times 0.8$
32 ［1．260］	53	7	46	23	73	7	66	33	63	7	56	28	73	7	66	33	48.5	18.2	W8x 125 Doppliz	6	9.5	7．5（6）	Rc1／8
40 ［1．575］	59	7	52	26	79	7	72	36	59	7	52	26	79	7	72	36	56.5	18.2	M8x 125 Doppliz	6	10.5	7.5	Rc1／8
50 ［1．969］	65	9	56	28	85	9	76	38	65	9	56	28	85	9	76	38	70	24.8	Mox 1.5 Depphtis	7	11	9.5	Rc1／4
63 ［2．480］	73	9	64	32	93	9	84	42	73	9	64	32	93	9	84	42	83	26.8	Mox 1.5 Depphtis	7	12.5	11	Rc1／4
80 ［3．150］	93	11	82	41	113	11	102	51	93	11	82	41	113	11	102	51	102	32.8	M44x2 Deppreo	9	18	12	Rc3／8
100 ［3．940］	114	12	102	51	134	12	122	61	114	12	102	51	134	12	122	61	122	32.8	Mi8225 Oppri20	9	22.5	16.5	Rc3／8

$\xlongequal[{\substack{\text { Bore } \\ \text { mm［in．］}}}]{ }$ Code	P_{1}	P_{2}	P3	P_{4}	R	S	T1	U	V	W	X	Y	Z	Appropriate through bolt \％
12 ［0．472］	$\phi 4.3$（Thru hole）C＇bore $\phi 6.5$（Both sides）and M5 X0．8（Both sides）	Counterore $\phi 6.5$ and M5 $\times 0.8$	9.5	4.5	－	25	16.3	R16	6	5	－	－	1	M3
16 ［0．630］	$\phi 4.3$（Thru hole）C＇bore $\phi 6.5$（Both sides）and M5 $\times 0.8$（Both sides）	Counterore $\phi 6.5$ and M5 X0． 8	9.5	4.5	－	29	19.8	R19	8	6	－	－	1	M3
20 ［0．787］	$\phi 4.3$（Thru hole）C＇bore $\phi 6.5$（Both sides）and M5 $\times 0.8$（Both sides）	Counterore $\phi 6.5$ and M5 $\times 0.8$	9.5	4.5	－	34	24	R22	10	8	－	－	1	M3
25 ［0．984］	$\phi 5.1$（Thru hole）C＇bore $\phi 8$（Both sides）and M6X1（Both sides）	Counterbore of 8 and M6X1	11.5	5.5	－	40	28	R25	12	10	－	－	1	M4
32 ［1．260］	$\phi 5.1$（Thru hole）C＇bore $\phi 8$（Both sides）and M6X1（Both sides）	Counterbore ¢8 and M6X1	11.5	5.5	4.5	44	34	R29．5	16	14	15	13.6	1	M4
40 ［1．575］	$\phi 6.9$（Thru hole）C＇bore $\phi 9.5$（Both sides）and M8X1．25（Both sides）	Counteroreo $\phi 9.5$ and M8X1．25	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
50 ［1．969］	$\phi 6.9$（Thru hole）C＇bore $\phi 11$（Both sides）and M8X1．25（Both sides）	Counterore $\phi 11$ and M8X1．25	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6
63 ［2．480］	$\phi 6.9$（Thru hole）C＇bore $\phi 11$（Both sides）and M8X1．25（Both sides）	Countefore $\phi 11$ and M8X1．25	16.5	8.5	8	75	60	R50	20	17	21.6	19	1.6	M6
80 ［3．150］	\＄10．5（Thru hole）C＇bore $\phi 14$（Both sides）and M12X1．75（Both sides）	Counteroreo $\phi 14$ and M12X1．75	22.5	10.5	8	94	74	R62	25	22	27.6	25	1.6	M8
100 ［3．940］	$\phi 12.3$（Thru hole）C＇bore $\phi 17.5$（Both sides）and M14X2（Both sides）	Counterore $\phi 17.5$ and M14X2	27	13	8	114	90	R75	32	27	27.6	25	2	M10

Note：Figure in parentheses［ ］is for the standard cylinder（CDAT）when stroke 1，or stroke $1+$ stroke 2 is 5 mm ．
※Some types of mounting screws are available（to be ordered separately）．See p． 209.

Groove dimensions for sensor switch
$\phi 20 \cdot \phi 25$

$\phi 16$

$\phi 12$

$\phi 12$

The drawing is for $\phi 12$.

$\phi 32 \sim \phi 50$

$\begin{array}{ll} \hline \text { Bore } & \text { Code } \\ m m[\text { in. }] \end{array}$		P_{2}	P_{3}	P4	R	S	T1	U	V	W	X	Y	Z	Appropriate through bolt \%
$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$	D1	Counterbore $\phi 6.5$												
	D2	and M5×0.8	9.5	4.5	-	25	16.3	R16	6	5	-	-	1	M3
$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	D1	Counterbore $\phi 6.5$												
	D2	and M 5×0.8	9.5	4.5	-	29	19.8	R19	8	6	-	-	1	M3
$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	D1	Counterbore $\phi 6.5$												
	D2	and M5 $\times 0.8$	9.5	4.5	-	34	24	R22	10	8	-	-	1	M3
$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$	D1	Counterbore $\phi 8$												
	D2	and M6×1	11.5	5.5	-	40	28	R25	12	10	-	-	1	M4
$\begin{gathered} 32 \\ {[1.260]} \end{gathered}$	D1	Counterbore $\phi 8$												
	D2	and M6×1	11.5	5.5	4.5	44	34	R29.5	16	14	15	13.6	1	M4
$\begin{gathered} 40 \\ {[1.575]} \end{gathered}$	D1	Counterbore $\phi 9.5$		7.5		52								
	D2	and M8×1.25	15.5	7.5	4.5	52	40	R35	16	14	15	13.6	1.6	M5
$\begin{gathered} 50 \\ {[1.969]} \end{gathered}$	D1	Counterbore $\phi 11$												
	D2	and M8×1.25	16.5	8.5	8	62	48	R41	20	17	21.6	19	1.6	M6

Notes: D1 is when stroke $1+$ stroke 2 is $5 \sim 15(\phi 50: 10 \sim 20) \mathrm{mm}$.
D2 is when stroke $1+$ stroke 2 is $16 \sim 30(\phi 50: 21 \sim 40) \mathrm{mm}$.
※ Some types of mounting screws are available (to be ordered separately). See p.209.

Double acting type, Single acting push type
$\phi 12 \sim \phi 25$
$\phi 32 \sim \phi 100$
(Single acting type available up to $\phi 50$)

$\begin{array}{ll} \hline \text { Bore } & \text { Code } \\ \hline \mathrm{mm} \text { [in.] } & \\ \hline \end{array}$	B_{2}	F	H	I	J	K2	M	V	W
12 [0.472]	17	5	10	8	4	M5 $\times 0.8$	3.5	6	5
16 [0.630]	20.5	5.5	13	10	5	M6×1	3.5	8	6
20 [0.787]	22.5	5.5	15	12	5	M8×1	4.5	10	8
25 [0.984]	24	6	15	14	6	M10×1.25	5	12	10
32 [1.260]	35	7	25	19	8	$\mathrm{M} 14 \times 1.5$	6	16	14
40 [1.575]	35	7	25	19	8	M14×1.5	6	16	14
50 [1.969]	37	9	25	27	11	$\mathrm{M} 18 \times 1.5$	7	20	17
63 [2.480]	37	9	25	27	11	$\mathrm{M} 18 \times 1.5$	7	20	17
80 [3.150]	44	11	30	32	13	$\mathrm{M} 22 \times 1.5$	9	25	22
100 [3.940]	50	12	35	36	14	M26×1.5	9	32	27

Remark: Cylinder joints and cylinder rod ends are available for mounting with the rod end male thread specification. For details, see p. 1568.
Dimensions of Centering Location (mm)

$\underbrace{\substack{\text { min.] }}}_{\text {Brarem }}$ Code	B1	G	L
16 [0.630]	5.5	1.5	9.4
20 [0.787]	5.5	1.5	12
25 [0.984]	6	2	15
32 [1.260]	7	2	21
40 [1.575]	7	2	29
50 [1.969]	9	2	38
63 [2.480]	9	2	40
80 [3.150]	11	2	45
100 [3.940]	12	2	55

JIG CYLINDERS C SERIES MOUNTING BRACKETS

Foot Mounting Bracket, Flange Mounting Bracket, Clevis Mounting Bracket

Order Codes of Mounting Bracket Only
\square - CDA \square Bore size $\phi 12 \sim \phi 100$ Note5

Cylinder type
CDA - For standard, double rod end, tandem, dual stroke, long stroke, lateral load resistant, and end keep cylinder
CDAL ——For square rod cylinder Note4
Notes: 1. Cannot be mounted on tandem or dual stroke cylinders.
And cannot be mounted on the 5 mm strokes of $\phi 16$ and $\phi 25$, and 10 mm strokes of $\phi 50, \phi 63$, and $\phi 80$ of the standard cylinders.

Mounting bracket

1 - Foot bracket Note1

- One set consists of 2 brackets.

3 Flange bracket ${ }^{\text {Note2 }}$
7 ——Clevis bracket Note3
2. Cannot be mounted on the head side of the tandem cylinder, cylinder 1 side of the dual stroke cylinder, the rod side of the square rod cylinder with centering location, or the bore size $\phi 40$ with centering location (-G).
3. Cannot be used with anything other than the long stroke cylinder, the lateral load resistant cylinder, or the end keep cylinder.
4. Applicable to the foot mounting bracket only.
5. Not available for $\phi 6$ [0.236in.], $\phi 8$ [0.315in.], and $\phi 10$ [0.394in.].
$\phi 12 \sim \phi 16$

$\phi 20 \sim \phi 100$

Note: Only for $\phi 50$

- Mounting screw

For $\phi 12 \sim \phi 80$

For $\phi 100$

Material: Steel

$\underset{\substack{\text { Bore } \\ \mathrm{mm} \text { [in.] }}}{ }$ Code	A	B	C	D	E	F	G	H	I	J	K	L	N	0	P	Q	R	S	Mass g [oz.]
12 [0.472]	44	34	25	16.3	12.5	8	2	29.5	4.5	4.5	5.5	11	12	2.7	9.5	M5	17	8.9	50 [1.76]
16 [0.630]	48	38	29	19.8	13	8	2	33.5	4.5	4.5	5.5	11	12	2.7	9.5	M5	19	9.1	62 [2.19]
20 [0.787]	54	44	34	24	15	9.2	3.2	16.5	7	4.5	5.5	-	$12(12,20)$	2.7	9.5	M5	24	12	84 [2.96] (87 [3.07])
25 [0.984]	64	52	40	28	16.5	10.7	3.2	17.5	6	5.5	6.6	-	$14(14,22)$	3.3	10.5	M6	26	12	104 [3.67] (108 [3.81])
32 [1.260]	68	56	44	34	17	11.2	3.2	19	8	5.5	6.6	-	$14(14,25)$	3.3	10.5	M6	30	13	126 [4.44] (131 [4.62])
40 [1.575]	78	64	52	40	18.2	11.2	3.2	19	7	6.6	9	-	$20(20,30)$	4.4	14	M8	33	13	160 [5.64] (168 [5.93])
50 [1.969]	96	78	62	48	22.7	14.7	3.2	22	8	9	9	-	$20(20,35)$	4.4	14	M8	39	15	220 [7.76] (232 [8.18])
63 [2.480]	108	90	75	60	25.2	16.2	3.2	24	8.5	9	9	-	$20(20,35)$	4.4	14	M8	46	16	300 [10.58] (312 [11.01])
80 [3.150]	134	112	94	74	30.5	19.5	4.5	33	12	11	14	-	25	6.6	21	M12	59	22	644 [22.72]
100 [3.940]	160	134	114	90	35.5	23	6	40	14	14	16	-	30	14	21	M14	71	26	1172 [41.34]

Remark: Figures in parentheses () are for square rod cylinders.

[^0]Mounting screw
For ϕ 12~ $\boldsymbol{\phi} 80$
$\phi 20 \sim \phi 100$
Mounting screw

For $\phi 100$

$\underset{\substack{\text { Borem } \\ m \mathrm{~mm} \text { [in] }}}{ }$ Code	N	P	Q	T	BB	BC	BD	BE	BF	BG	BJ	BK	BL	BP	Mass g [oz.]
12 [0.472]	12	9.5	M5	16.3	6	28	-	50	38	11	10	5.5	3.6	4.5	55 [1.94]
16 [0.630]	12	9.5	M5	19.8	6	32	-	54	42	11	10	5.5	3.6	4.5	71 [2.50]
20 [0.787]	12(18)	9.5	M5	24	6	36	24	58	46	15	10	5.5	3.6	4.5	101 [3.56] (105 [3.70))
25 [0.984]	14(22)	10.5	M6	28	8	42	28	68	54	17	11	6.6	4.3	5.5	$160[5.64)^{(1655[5.82)}$
32 [1.260]	14(25)	10.5	M6	34	8	48	34	72	58	22	11	6.6	4.3	5.5	$186[6.56]$ (196] [6.11))
40 [1.575]	20(30)	14	M8	40	8	58	40	84	68	28	15	9	5.3	6.6	$335[11.82]$ (351 [12.38)
50 [1.969]	20(35)	14	M8	48	8	66	40	102	82	38	15	9	5.3	9	477 [15.77] (471 [16.61])
63 [2.480]	20(35)	14	M8	60	8	78	50	116	96	40	15	9	5.3	9	$591[20.85]$ [615 [21.69)
80 [3.150]	25	21	M12	74	12	100	70	142	118	45	22	14	7.3	11	1414 [49.88]
100 [3.940]	30	21	M14	90	20	116	80	170	142	55	23	16	15.2	14	2606 [91.92]

Remark: Figures in parentheses () are for square rod cylinders.

$\phi 50 \sim \phi 100$

Material: Steel

$\underset{\substack{\text { Brare } \\ \mathrm{mm} \text { [in.] }}}{ }$ Code	N	0	P	Q	T	CA	CB	CC	CD	CE	CF	CG	CJ	CK	CP	CS	CT	CU	PA ${ }_{1}$	PB1	PC	PD	PE1	Mass [02]
12 [0.472]	12	5	8.5	M5	16.3	15	12	11	R 7.5	$4^{+0.03}$	R5	4	4	5.5	$4_{+0.1}^{+0.2}$	25	3	R16	15	10.6	0.7	488	2.5	30 [1.06]
16 [0.630]	12	5	8.5	M5	19.8	17	16	12	R10	$5^{+0.03}$	R6	4	5	5.5	$5{ }_{+0.1}^{+0.2}$	29	3.5	R19	17	12.6	0.7	588	3	40 [1.41]
20 [0.787]	12	5	8.5	M5	24	25	22	17	R14	$8^{+0.04}$	R11	4	8	5.5	$8_{+0.2}^{+0.4}$	34	5.2	R22	24.4	19.6	0.9	8*8	6	75 [2.65]
25 [0.984]	16	6	10	M6	28	25	26	17	R16	8+0.04	R11	4	8	6.6	$8_{+0.2}^{+0.4}$	40	5.2	R25	24.4	19.6	0.9	8+8	6	$100[3.53]$
32 [1.260]	16	6	10	M6	34	29	34	19	R20	$10^{+0.04}$	R12.5	4	10	6.6	$12_{+0.2}^{+0.4}$	44	8	R29.5	34	29.2	0.9	10ヶ8	8	165 [5.82]
40 [1.575]	20	8	13	M8	40	29	34	19	R20	$10^{+0.04}$	R12.5	4	10	9	$12_{+0.2}^{+0.4}$	52	8	R35	34	29.2	0.9	10ヶ8	8	200 [7.05]
50 [1.969]	22	8	13	M8	48	32	-	19	R17	$14_{0}^{+0.08}$	R14	5	13	$\begin{array}{\|c\|} \hline 9 \text { Counterbore } \\ \phi 17 \end{array}$	$20_{+0.3}^{+0.6}$	63	12.5	R41.5	55	47	1.15	14-0.070	13	
63 [2.480]	20	8	13	M8	60	32	-	19	R17	$14^{+0.08}$	R14	6	13	$\begin{array}{\|c} 9 \text { Counterbore } \\ \phi 20 \end{array}$	$20_{+0.3}^{+0.6}$	76	15	R50.5	60	52	1.15	$14_{-0.070}^{-0.030}$	13	
80 [3.150]	30	12	18	M12	74	52	-	32	R24	$20^{+0.1}$	R20	7	20	$\begin{array}{\|c\|c\|} \hline 14 \text { Counterbore } \\ \phi 22 \end{array}$	$32_{+0.3}^{+0.6}$	95	16	R62.5	74	66	1.35	20-0.084	19	1110
100 [3.940]	30	14	21	M14	90	52	-	32	R24	$20^{+0.1}$	R21	7	20	$\begin{array}{\|c\|} \hline 16 \text { Counterbore } \\ \$ 26 \end{array}$	$32_{+0.3}^{+0.6}$	115	16	R75.5	74	66	1.35	20-0.084	19	1490 [5

Notes: 1. CD = Swing range of clevis mounting bracket itself.
2. $C F=$ Maximum radius of swing for mating bracket.

Remark: $\phi 12 \sim \phi 50$ are mounted with 2 bolts.

JIG CYLINDERS C SERIES SENSOR SWITCHES

Solid State Type, Reed Switch Type

Order Codes

Moving Sensor Switch

- Loosening mounting screw allows the sensor switch to be moved along the switch mounting groove on the cylinder body.
- Tighten the mounting screw with a tightening torque of $0.1 \sim$ $0.2 \mathrm{~N} \cdot \mathrm{~m}[0.9 \sim 1.8 \mathrm{in} \cdot \mathrm{lbf}]$.

Minimum Cylinder Strokes When Using Sensor Switches

Solid state type			mm	Reed switch type			mm
Bore size	2 pcs. mounting Note		1 pc. mounting	Bore size	2 pcs. mounting		1 pc. mounting
	1-surface mounting	2-surface mounting			1-surface mounting	2-surface mounting	
$6 \sim 12[0.236 \sim 0.472 \mathrm{in}$.	30	10	5	12 .]	30	10	10
16~100 [0.630~3.940in.]	10			16~100 [0.630~3.940in.]	10		

Note: Two pieces can be mounted with 5 mm stroke.
Take note that overlapping may occur, however.

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

Operating range : ℓ
The distance the piston travels in one direction, while the switch is in the ON position.
-Response differential : C
The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

$\phi 16$
$\phi 20 \sim \phi 100$

Mounting on any of surfaces (A), B), or (C) allows detection of the end of stroke on the rod side and head side.
(The sensor switch may sometimes protrude from the cylinder body.)

Connection port

Mounting on any of surfaces (A), (B), (C), or (D) allows detection of the end of stroke on the rod side and head side.
(The sensor switch may sometimes protrude from the cylinder body.)
However, the ZE2 $\square \square$ sensor switches cannot be mounted on the (D) position in $\phi 32, \phi 40$, and $\phi 50$.

The standard mounting positions at shipping for the end of stroke detection on the rod side is either surface ${ }^{\star}$) or surface $(\subset$, while the end of stroke detection on the head side is surface (B). If mounting sensor switches on the same surface for detection of both ends is required, consult us. (The sensor switch may sometimes protrude from the cylinder body.)

Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the position shown in the diagram below (figures in the tables are reference values), the magnet reaches the sensor switch's maximum sensing location at the end of the stroke.

Standard cylinder, Non-rotating cylinder

Solid state type
Double acting type

Code - Bore		6	8	10	12	16	20	25	32	40	50	63	80	100
X	Standard type	$\left.\begin{gathered} 7.2 \\ {[0.833} \end{gathered} \right\rvert\,$	$\left[\begin{array}{c} 8 \\ {[0.315]} \end{array}\right.$	$\left.\begin{aligned} & 8.3 \\ & {[0.327} \end{aligned} \right\rvert\,$	$\begin{array}{\|c\|} \hline 7 \\ {[0.276]} \end{array}$	$\begin{gathered} 7 \\ \hline 0.276 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ {[0.433]} \end{gathered}$	$\begin{gathered} \hline 11 \\ {[0.433]} \end{gathered}$	$\begin{array}{\|c\|} \hline 13.5 \\ {[0.5311} \end{array}$	$\left\lvert\, \begin{gathered} 14.5 \\ {[0.571]} \end{gathered}\right.$	$\begin{array}{\|l\|} \hline 12.5 \\ 0.492] \\ \hline \end{array}$	$\left[\begin{array}{c} 15 \\ {[0.591]} \end{array}\right]$	$\begin{gathered} 20 \\ {[0.88]} \end{gathered}$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$
	With bumper (-R)	-	-	-	$\left.\begin{array}{c} 10 \\ {[0.394]} \end{array}\right]$	$\left\|\begin{array}{c} 10 \\ {[0.394]} \end{array}\right\|$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\left[\begin{array}{c} 16 \\ {[0.630]} \end{array}\right]$	$\left[\begin{array}{l} 15.5 \\ {[0.610]} \end{array}\right]$	$\left[\begin{array}{c} 16.5 \\ {[0.650]} \end{array}\right]$	$\left.\begin{array}{c} 15.5 \\ {[0.60]} \end{array}\right]$	$\left[\begin{array}{c} 15 \\ {[0.591]} \end{array}\right]$	$\begin{gathered} 20 \\ {[0.78]} \end{gathered}$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$
Y	Standard type	$\left[\begin{array}{c} 1 \\ {[0.039]} \end{array}\right]$	$\left[\begin{array}{c} 0.3 \\ {[0.012]} \end{array}\right.$	$\left[\begin{array}{c} 1 \\ {[0.039} \end{array}\right]$	$\begin{gathered} 4 \\ {[0.57]} \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \\ \hline \end{gathered}$	$\begin{gathered} 7.5 \\ {[0.295]} \end{gathered}$	$\left.\begin{gathered} 9 \\ 0.354 \end{gathered} \right\rvert\,$	$\begin{gathered} 8.5 \\ {[0.335]} \end{gathered}$	$\left[\left.\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array} \right\rvert\,\right.$	$\left[\begin{array}{c} 14.5 \\ {[0.571]} \end{array}\right.$	$\left[\begin{array}{c} 16 \\ {[0.630} \end{array}\right]$	$\left[\begin{array}{c} 20 \\ {[0.78]} \end{array}\right]$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$
	With bumper (-R)	-	-	-	$\begin{gathered} 6 \\ {[0.236]} \end{gathered}$	$\begin{gathered} 6 \\ {[0.236]} \end{gathered}$	$\begin{gathered} 8.5 \\ {[0.355]} \end{gathered}$	$\begin{gathered} 9 \\ 0.354 \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.256]} \end{gathered}$	$\begin{gathered} 8.5 \\ \hline 0.335] \end{gathered}$	$\begin{array}{\|c\|} \hline 11.5 \\ {[0.533]} \end{array}$	$\left.\begin{array}{c} 16 \\ 0.6300 \end{array}\right]$	$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	$\begin{aligned} & 25 \\ & {[0.984]} \end{aligned}$

Single acting push type

Code Bore	6	8	10	12	16	20	25	32	40	50
X	$\begin{aligned} & 17.2 \\ & {[0.677]} \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 18 \\ {[0.709]} \end{array}\right]$	$\left.\begin{array}{\|c\|} \hline 18.3 \\ 10.7201 \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 15 \\ {[0.591]} \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ {[0.591]} \end{array}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{aligned} & 14.5 \\ & {[0.571]} \end{aligned}$	$\begin{aligned} & 15.5 \\ & {[0.610]} \end{aligned}$	$\begin{array}{\|c\|} \hline 17.5 \\ {[0.689]} \end{array}$	$\begin{gathered} 17 \\ {[0.669]} \end{gathered}$
Y	$\begin{array}{\|c\|} \hline 1 \\ {[0.039]} \end{array}$	$\begin{array}{\|c\|} \hline 0.3 \\ {[0.012]} \\ \hline \end{array}$	$\begin{gathered} 1 \\ {[0.039]} \end{gathered}$	$\begin{gathered} 1 \\ {[0.039]} \end{gathered}$	$\begin{array}{\|c\|} \hline 1 \\ {[0.039]} \end{array}$	$\begin{array}{\|c\|} \hline 4.5 \\ {[0.177]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7.5 \\ {[0.295]} \end{array}$	$\begin{aligned} & 10.5 \\ & {[0.413]} \\ & \hline \end{aligned}$

Single acting pull type

Code	Bore	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$
\mathbf{X}	7.2	8	8.3	7	7	11	11	13.5	14.5	12.5	
		$[0.283]$	$[0.315]$	$[0.327]$	$[0.276]$	$[0.276]$	$[0.433]$	$[0.433]$	$[0.531]$	$[0.571]$	$[0.492]$
\mathbf{Y}	11	10.3	11	9	9	12.5	14	13.5	15.5	14.5	
		$[0.433]$	$[0.406]$	$[0.433]$	$[0.354]$	$[0.354]$	$[0.492]$	$[0.551]$	$[0.531]$	$[0.610]$	$[0.571]$

Reed switch type
Double acting type

Code - Bore		12	16	20	25	32	40	50	63	80	10
X	Standard type	$\begin{array}{\|c\|} \hline 2.5 \\ {[0.098]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.5 \\ {[0.098]} \end{array}$	$\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \\ \hline \end{array}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{aligned} & 15.5 \\ & {[0.610]} \\ & \hline \end{aligned}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \end{aligned}$
	With bumper (-R)	$\begin{gathered} 5.5 \\ {[0.217]} \end{gathered}$	$\begin{gathered} 5.5 \\ {[0.217]} \end{gathered}$	$\begin{aligned} & 10.5 \\ & {[0.413]} \end{aligned}$	$\begin{aligned} & 11.5 \\ & {[0.453]} \end{aligned}$	$\begin{gathered} 11 \\ {[0.433]} \end{gathered}$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$	$\left.\begin{array}{c} 11 \\ {[0.433]} \end{array}\right]$	$\begin{aligned} & 10.5 \\ & {[0.413]} \end{aligned}$	$\begin{aligned} & 15.5 \\ & {[0.610]} \\ & \hline \end{aligned}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \end{aligned}$
Y	Standard type	$\begin{array}{\|c\|} \hline-0.5 \\ {[-0.020]} \\ \hline \end{array}$	$\begin{aligned} & -0.5 \\ & {[-0.020]} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3 \\ {[0.118]} \end{array}$	$\begin{gathered} 4.5 \\ {[0.177]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \\ \hline \end{gathered}$	$\left.\begin{array}{c} 6 \\ {[0.236]} \end{array}\right]$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{aligned} & 11.5 \\ & {[0.453]} \end{aligned}$	$\begin{aligned} & 15.5 \\ & {[0.610]} \\ & \hline \end{aligned}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \\ & \hline \end{aligned}$
	With bumper (-R)	$\begin{gathered} 1.5 \\ {[0.059]} \end{gathered}$	$\begin{gathered} 1.5 \\ {[0.059]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ {[0.157]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.5 \\ {[0.177]} \\ \hline \end{array}$	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ {[0.157]} \end{array}$	$\begin{array}{\|c\|} \hline 7 \\ {[0.276]} \end{array}$	$\begin{array}{\|c\|} \hline 11.5 \\ {[0.453]} \end{array}$	$\begin{aligned} & 15.5 \\ & {[0.610]} \\ & \hline \end{aligned}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \\ & \hline \end{aligned}$

-Single acting push type

Code Bore	12	16	20	25	32	40	50
X	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{gathered} 9.5 \\ {[0.374]} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 10 \\ {[0.394]} \\ \hline \end{array}$	$\begin{gathered} 11 \\ {[0.433]} \\ \hline \end{gathered}$	$\begin{array}{\|c} 13 \\ {[0.512]} \\ \hline \end{array}$	$\begin{gathered} 12.5 \\ {[0.492]} \\ \hline \end{gathered}$
Y	$\begin{gathered} -3.5 \\ {[-0.138]} \end{gathered}$	$\begin{array}{\|c\|} \hline-3.5 \\ {[-0.138]} \\ \hline \end{array}$	$\begin{gathered} 0 \\ {[0]} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ {[0.039]} \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	$\begin{array}{\|c} \hline 3 \\ {[0.118]} \\ \hline \end{array}$	$\begin{gathered} 6 \\ {[0.236]} \\ \hline \end{gathered}$

Single acting pull type
mm [in.]

Code Bore	12	16	20	25	32	40	50
X	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.256]} \end{gathered}$	$\begin{array}{\|c} \hline 6.5 \\ {[0.256]} \\ \hline \end{array}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\begin{array}{\|c} \hline 10 \\ {[0.394]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 8 \\ {[0.315]} \\ \hline \end{array}$
Y	$\begin{gathered} \hline 4.5 \\ {[0.177]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4.5 \\ {[0.177]} \end{array}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\begin{gathered} 9.5 \\ {[0.374]} \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ {[0.354]} \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ {[0.433]} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$

Square rod cylinders with magnet

Solid state type

- Double acting type

Code Bre Bore		20	25	32	40	50	63
X	Standard type	$\begin{gathered} 17.5 \\ {[0.689]} \\ \hline \end{gathered}$	$\begin{gathered} 17.5 \\ {[0.689]} \\ \hline \end{gathered}$	$\begin{gathered} 22.5 \\ {[0.886]} \\ \hline \end{gathered}$	$\begin{gathered} 24.5 \\ {[0.965]} \end{gathered}$	$\begin{gathered} 27.5 \\ {[1.083]} \end{gathered}$	$\begin{gathered} 30 \\ {[1.181]} \end{gathered}$
	With bumper (-R)	$\begin{gathered} 21.5 \\ {[0.846]} \\ \hline \end{gathered}$	$\begin{gathered} 22.5 \\ {[0.886]} \\ \hline \end{gathered}$	$\begin{gathered} 24.5 \\ {[0.965]} \\ \hline \end{gathered}$	$\begin{gathered} 26.5 \\ {[1.043]} \\ \hline \end{gathered}$	$\begin{gathered} 30.5 \\ {[1.201]} \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ {[1.181]} \\ \hline \end{gathered}$
Y	Standard type	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\begin{gathered} 14 \\ {[0.551]} \\ \hline \end{gathered}$	$\begin{gathered} 14.5 \\ {[0.571]} \end{gathered}$	$\begin{gathered} 14.5 \\ {[0.571]} \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$
	With bumper (-R)	$\begin{gathered} 8.5 \\ {[0.335]} \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ {[0.354]} \\ \hline \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.256]} \\ \hline \end{gathered}$	$\begin{gathered} 8.5 \\ {[0.335]} \\ \hline \end{gathered}$	$\begin{gathered} 11.5 \\ {[0.453]} \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$

Reed switch type
Double acting type

Code Bore		20	25	32	40	50	63
X	Standard type	$\begin{gathered} 13 \\ {[0.512]} \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ {[0.512]} \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ {[0.709]} \end{gathered}$	$\begin{gathered} 20 \\ {[0.787]} \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ {[0.906]} \\ \hline \end{gathered}$	$\begin{gathered} 25.5 \\ {[1.004]} \end{gathered}$
	With bumper (-R)	$\begin{gathered} 17 \\ {[0.669]} \end{gathered}$	$\begin{gathered} 18 \\ {[0.709]} \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ {[0.787]} \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ {[0.866]} \end{gathered}$	$\begin{gathered} 26 \\ {[1.024]} \end{gathered}$	$\begin{gathered} 25.5 \\ {[1.004]} \\ \hline \end{gathered}$
Y	Standard type	$\begin{gathered} 5 \\ {[0.197]} \\ \hline \end{gathered}$	$\begin{gathered} 4.5 \\ {[0.177]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 6 \\ {[0.236]} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \\ \hline \end{gathered}$	$\begin{gathered} 11.5 \\ {[0.453]} \end{gathered}$
	With bumper (-R)	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 4.5 \\ {[0.177]} \end{gathered}$	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 7 \\ {[0.276]} \end{gathered}$	$\begin{gathered} 11.5 \\ {[0.453]} \\ \hline \end{gathered}$

Double rod cylinders with magnet

Solid state type
ODouble acting type

Code - Bore		6	8	10	12	16	20	25	32	40	50	63	80	100
X	Standard type	$\left[\begin{array}{c} 7.2 \\ {[0.833]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{aligned} & 8.3 \\ & {[0.327} \end{aligned}$	$\begin{gathered} 7 \\ {[0.276]} \end{gathered}$	$\begin{gathered} 7 \\ 0.276] \end{gathered}$	$\begin{gathered} \hline 11 \\ {[0.433]} \end{gathered}$	$\begin{gathered} 111 \\ {[0.433]} \end{gathered}$	$\begin{array}{\|c\|} \hline 13.5 \\ {[0.5311} \end{array}$	$\begin{array}{\|l\|} \hline 14.5 \\ {[0.571]} \end{array}$	$\left[\begin{array}{l} 12.5 \\ {[0.922]} \end{array}\right.$	$\left.\begin{array}{l} 15.5 \\ {[0.60]} \end{array}\right]$	$\left[\begin{array}{l} 20.5 \\ {[0.007]} \end{array}\right]$	$\left[\begin{array}{c} 25 \\ {[0.984]} \end{array}\right.$
	With bumper (-R)	-	-	-	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array}$	$\begin{array}{\|c\|} \hline 16.5 \\ {[0.650]} \\ \hline \end{array}$	$\begin{gathered} \hline 14 \\ {[0.551]} \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{array}{\|c\|} \hline 20.5 \\ {[0.007]} \end{array}$	$\begin{aligned} & 25 \\ & {[0.984} \\ & \hline \end{aligned}$
Y	Standard type	$\left[\begin{array}{c} 5.5 \\ {[0.217]} \end{array}\right]$	$\begin{aligned} & 5.8 \\ & {[0.288]} \end{aligned}$	$\begin{gathered} 6 \\ {[0.360]} \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\left[\begin{array}{c} 10 \\ {[0.344]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 14 \\ {[0.551]} \\ \hline \end{array}$	$\left.\begin{array}{\|c\|c\|} \hline 14.5 \\ {[0.571]} \end{array}\right]$	$\begin{gathered} 15.5 \\ {[0.600} \end{gathered}$	$\left.\begin{array}{l} 17.5 \\ {[0.689]} \end{array}\right]$	$\left.\begin{array}{l} 16.5 \\ {[0.650} \end{array}\right]$	$\left[\begin{array}{c} 18 \\ {[0.709} \end{array}\right]$	$\left[\begin{array}{c} 26.5 \\ {[1.043]} \end{array}\right.$	$\left\{\begin{array}{l} 31.5 \\ {[1.20]} \end{array}\right.$
	With bumper (-R)	-	-	-	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{aligned} & 14.5 \\ & {[0.571]} \end{aligned}$	$\begin{gathered} 6.5 \\ {[0.56]} \end{gathered}$	$\left.\begin{array}{\|c\|} 15.5 \\ {[0.60]} \end{array}\right]$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\left.\begin{gathered} 18 \\ 10.090 \end{gathered} \right\rvert\,$	$\begin{aligned} & 26.5 \\ & {[1.043]} \\ & \hline \end{aligned}$	$\left\{\begin{array}{l} 31.5 \\ {[1.20]} \end{array}\right.$

Single acting type

Code Bore	12	16	20	25	32	40	50
X	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{gathered} 14 \\ {[0.551]} \\ \hline \end{gathered}$	$\begin{gathered} 14.5 \\ {[0.571]} \end{gathered}$	$\begin{gathered} 15.5 \\ {[0.610]} \end{gathered}$	$\begin{array}{\|c\|} \hline 17.5 \\ {[0.689]} \end{array}$	$\begin{gathered} 16.5 \\ {[0.650]} \end{gathered}$
Y	$\begin{array}{\|c\|} \hline 7 \\ {[0.276]} \end{array}$	$\begin{gathered} 7 \\ {[0.276]} \end{gathered}$	$\begin{gathered} 11 \\ {[0.433]} \end{gathered}$	$\begin{gathered} 11 \\ {[0.433]} \end{gathered}$	$\begin{array}{\|c\|} \hline 13.5 \\ {[0.531]} \end{array}$	$\begin{gathered} 14.5 \\ {[0.571]} \end{gathered}$	$\begin{gathered} 12.5 \\ {[0.492]} \end{gathered}$

Reed switch type
Double acting type

Code \quad Bore		12	16	20	25	32	40	50	63	80	100
X	Standard type	$\left.\begin{array}{\|c\|} \hline 2.5 \\ {[0.098]} \end{array} \right\rvert\,$	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \end{array} \right\rvert\,$	$\left\|\begin{array}{c} 9 \\ {[0.354]} \end{array}\right\|$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \end{array}$	$\left.\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array} \right\rvert\,$	$\left.\begin{array}{\|l\|} \hline 10.5 \\ {[0.413]} \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 16 \\ {[0.630]} \end{array}$	$\begin{array}{\|l\|} \hline 20.5 \\ {[0.807]} \end{array}$
	With bumper (-R)	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \end{array}$	$\begin{array}{\|l\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.5 \\ {[0.453]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12 \\ {[0.472]} \end{array}$	$\begin{array}{\|c\|} \hline 9.5 \\ {[0.374]} \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{array}{\|c\|} \hline 16 \\ {[0.630]} \\ \hline \end{array}$	$\begin{array}{\|c} 20.5 \\ {[0.807]} \\ \hline \end{array}$
Y	Standard type	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \end{array}$	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \end{array}$	$\begin{gathered} 9.5 \\ {[0.374]} \end{gathered}$	$\left.\left\lvert\, \begin{array}{c} 10 \\ {[0.394]} \end{array}\right.\right]$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13 \\ {[0.512]} \end{array}$	$\begin{array}{\|c\|} \hline 12 \\ {[0.472]} \end{array}$	$\left.\begin{array}{\|c\|} \hline 13.5 \\ {[0.531]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 22 \\ {[0.866]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 27 \\ {[1.063]} \\ \hline \end{array}$
	With bumper (-R)	$\begin{array}{\|c\|} \hline 7.5 \\ {[0.295]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7.5 \\ {[0.295]} \end{array}$	$\begin{array}{\|l} 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \end{array}\right]$	$\left.\begin{array}{\|c\|} \hline 2 \\ {[0.079]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13.5 \\ {[0.531]} \end{array}$	$\begin{array}{\|c\|} \hline 22 \\ {[0.866]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 27 \\ {[1.063]} \\ \hline \end{array}$

-Single acting type							mm [in.]
Code Bore	12	16	20	25	32	40	50
X	$\begin{gathered} 10.5 \\ {[0.413]} \end{gathered}$	$\begin{gathered} 10.5 \\ {[0.413]} \end{gathered}$	$\begin{gathered} 9.5 \\ {[0.374]} \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 11 \\ {[0.433]} \end{gathered}$	$\begin{gathered} \hline 13 \\ {[0.512]} \end{gathered}$	$\begin{gathered} \hline 12 \\ {[0.472]} \end{gathered}$
Y	$\left[\begin{array}{c} 2.5 \\ {[0.098]} \end{array}\right.$	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.256]} \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.256]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\left[\begin{array}{c} 10 \\ {[0.394]} \end{array}\right.$	$\begin{gathered} 8 \\ {[0.315]} \\ \hline \end{gathered}$

Tandem cylinders with magnet

Solid state type

- Double acting type

Code Bore		12	16	20	25	32	40	50	63	80	100
X	Standard type	$\begin{array}{\|c} 7 \\ {[0.276]} \end{array}$	$\left.\begin{array}{\|c\|} \hline 7 \\ {[0.276]} \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \end{array}$	$\left.\begin{array}{\|c\|} \hline 13.5 \\ {[0.531]} \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 14.5 \\ {[0.571]} \end{array}$	$\begin{array}{\|c\|} \hline 12.5 \\ {[0.492]} \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ {[0.591]} \\ \hline \end{array}$	$\left\|\begin{array}{c} 20 \\ {[0.787]} \end{array}\right\|$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$
	With bumper (-R)	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \end{array}$	$\left.\left\lvert\, \begin{array}{c} 10 \\ {[0.394]} \end{array}\right.\right]$	$\left.\begin{array}{\|c\|} \hline 15 \\ {[0.591]} \end{array}\right]$	$\left.\begin{array}{\|c\|} \hline 16 \\ {[0.630]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array}$	$\left.\begin{array}{\|c\|} \hline 16.5 \\ {[0.650]} \end{array}\right]$	$\left.\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array}\right]$	$\left\lvert\, \begin{array}{c\|} \hline 15 \\ {[0.591]} \end{array}\right.$	$\left\|\begin{array}{c} 20 \\ {[0.787]} \end{array}\right\|$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$
Y	Standard type	$\begin{array}{\|c} \hline 4 \\ {[0.157]} \end{array}$	$\left.\left\lvert\, \begin{array}{c} 4 \\ {[0.157]} \end{array}\right.\right]$	$\begin{gathered} 7.5 \\ {[0.295]} \end{gathered}$	$\left[\begin{array}{c} 9 \\ {[0.354]} \end{array}\right.$	$\begin{gathered} 8.5 \\ {[0.335]} \end{gathered}$	$\begin{aligned} & 10.5 \\ & {[0.413]} \end{aligned}$	$\begin{array}{\|c\|} \hline 14.5 \\ {[0.571]} \\ \hline \end{array}$	$\left[\begin{array}{c} 16 \\ {[0.630]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 20 \\ {[0.787]} \\ \hline \end{array}$	$\begin{gathered} \hline 25 \\ {[0.984]} \\ \hline \end{gathered}$
	With bumper (-R)	$\left[\begin{array}{c} 6 \\ {[0.236]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 6 \\ {[0.236]} \\ \hline \end{array}$	$\left.\left\lvert\, \begin{array}{c} 8.5 \\ {[0.335]} \end{array}\right.\right]$	$\left.\begin{array}{\|c\|} 9 \\ {[0.354]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.5 \\ {[0.335]} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.5 \\ {[0.453]} \end{array}$	$\left[\begin{array}{c\|} \hline 16 \\ {[0.630]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 20 \\ {[0.787]} \\ \hline \end{array}$	$\begin{gathered} 25 \\ {[0.984]} \\ \hline \end{gathered}$

Single acting push type

Code Bore	12	16	20	25	32	40	50
X	$\begin{array}{\|c} 15 \\ {[0.591]} \\ \hline \end{array}$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{gathered} 14 \\ {[0.551]} \\ \hline \end{gathered}$	$\begin{gathered} 14.5 \\ {[0.571]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 17.5 \\ {[0.689]} \end{array}$	$\begin{gathered} 16.5 \\ {[0.650]} \end{gathered}$
Y	$\begin{gathered} 1 \\ {[0.039]} \end{gathered}$	$\begin{gathered} 1 \\ {[0.039]} \end{gathered}$	$\begin{gathered} 4.5 \\ {[0.177]} \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ {[0.217]} \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.256]} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 7.5 \\ {[0.295]} \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ {[0.413]} \\ \hline \end{gathered}$

Reed switch type

Double acting type

Code - Bore		12	16	20	25	32	40	50	63	80	100
X	Standard type	$\begin{array}{\|c\|} \hline 2.5 \\ {[0.098]} \end{array}$	$\begin{array}{\|c\|} \hline 2.5 \\ {[0.098]} \end{array}$	$\begin{array}{c\|} \hline 6.5 \\ {[0.256]} \end{array}$	$\begin{gathered} 6.5 \\ {[0.256]} \end{gathered}$	$\left[\begin{array}{c} 9 \\ {[0.354]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \end{array}$	$\left.\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}\right]$	$\begin{aligned} & 10.5 \\ & {[0.413]} \end{aligned}$	$\begin{aligned} & \hline 15.5 \\ & {[0.610]} \end{aligned}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \end{aligned}$
	With bumper (-R)	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{array}{\|l\|} \hline 11.5 \\ {[0.453]} \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12 \\ {[0.472]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{array}{\|l} \hline 15.5 \\ {[0.610]} \\ \hline \end{array}$	$\begin{array}{\|l} 20.5 \\ {[0.807]} \\ \hline \end{array}$
Y	Standard type	$\left[\begin{array}{c} -0.5 \\ {[-0.020]} \end{array}\right]$	$\left[\begin{array}{c} -0.5 \\ {[-0.020]} \end{array}\right]$	$\begin{gathered} 3 \\ {[0.118]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.5 \\ {[0.177]} \\ \hline \end{array}$	$\left.\left\lvert\, \begin{array}{c} 4 \\ {[0.157]} \end{array}\right.\right]$	$\left[\begin{array}{c} 6 \\ {[0.236]} \end{array}\right]$	$\left.\begin{array}{c} 10 \\ {[0.394]} \end{array}\right]$	$\begin{aligned} & 11.5 \\ & {[0.453]} \end{aligned}$	$\begin{aligned} & 15.5 \\ & {[0.610]} \end{aligned}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \\ & \hline \end{aligned}$
	With bumper (-R)	$\left.\begin{array}{\|c\|} \hline 1.5 \\ {[0.059]} \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 1.5 \\ {[0.059]} \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 4 \\ {[0.157]} \end{array}$	$\left.\begin{array}{\|c\|} \hline 4.5 \\ {[0.177]} \end{array} \right\rvert\,$	$\left\|\begin{array}{c\|} \hline 2 \\ {[0.079]} \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hline 4 \\ {[0.157]} \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 7 \\ {[0.276]} \end{array}\right]$	$\left.\begin{array}{\|c\|} \hline 11.5 \\ {[0.453]} \end{array} \right\rvert\,$	$\begin{aligned} & \hline 15.5 \\ & {[0.610]} \end{aligned}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \end{aligned}$

Single acting push type

Code Bore	12	16	20	25	32	40	50
X	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{array}{\|c\|} \hline 9.5 \\ {[0.374]} \\ \hline \end{array}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 11 \\ {[0.433]} \end{gathered}$	$\begin{array}{\|c} 13 \\ {[0.512]} \\ \hline \end{array}$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$
Y	$\begin{gathered} -3.5 \\ {[-0.138]} \\ \hline \end{gathered}$	$\begin{gathered} -3.5 \\ {[-0.138]} \end{gathered}$	$\begin{gathered} 0 \\ {[0]} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ {[0.039]} \end{gathered}$	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	$\begin{gathered} 3 \\ {[0.118]} \end{gathered}$	$\begin{gathered} 6 \\ {[0.236]} \\ \hline \end{gathered}$

Double acting type											mm [in.]
Code Bore		12	16	20	25	32	40	50	63	80	100
x	Standard type	$\begin{gathered} 7 \\ {[0.276]} \end{gathered}$	$\begin{array}{c\|} \hline 7 \\ \hline[0.276] \end{array}$	$\begin{gathered} 11 \\ \hline 10.433] \\ \hline 10 \end{gathered}$	$\begin{array}{c\|} \hline 11 \\ {[0.433]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13.5 \\ {[0.531]} \end{array}$	$\begin{array}{\|c\|} \hline 14.5 \\ {[0.571]} \end{array}$	$\begin{array}{\|l\|} \hline 12.5 \\ {[0.492]} \end{array}$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{gathered} \hline 20 \\ {[0.787]} \end{gathered}$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$
	With bumper (-R)	$\text { 3) } \left.\begin{array}{c} 10 \\ {[0.394]} \end{array}\right]$	$\begin{gathered} 10 \\ y[0.394] \end{gathered}$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\left.\begin{array}{c} 16 \\ \hline[0.630] \end{array}\right]$	$\left\lvert\, \begin{gathered} 15.5 \\ {[0.610]} \end{gathered}\right.$	$\begin{gathered} 16.5 \\ {[0.650]} \end{gathered}$	$\left.\begin{array}{\|c\|c} \hline 14 \\ {[0.551]} \end{array}\right]$	$\begin{gathered} 15 \\ \hline \text { [0.591] } \end{gathered}$	$\begin{gathered} 20 \\ {[0.887]} \end{gathered}$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$
Y	Standard type	$\left[\begin{array}{c} 4 \\ {[0.157]} \end{array}\right]$	$\begin{gathered} 4 \\ 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 7.5 \\ {[0.295]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\left[\begin{array}{c} 8.5 \\ {[0.335]} \end{array}\right.$	$\begin{array}{l\|} 10.5 \\ {[0.413]} \end{array}$	$\begin{array}{\|l\|} \hline 14.5 \\ {[0.571]} \end{array}$	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$
	With bumper (-R)	$\text { 4) } \left.\begin{array}{c} 6 \\ {[0.236]} \end{array}\right]$	$\left[\begin{array}{c} 6 \\ {[0.236]} \end{array}\right.$	$\begin{gathered} 8.5 \\ {[0.335]} \end{gathered}$	$\left[\begin{array}{c} 9 \\ {[0.354]} \end{array}\right.$	$\left[\begin{array}{c} 6.5 \\ {[0.256]} \end{array}\right]$	$\left[\begin{array}{c} 8.5 \\ {[0.335]} \end{array}\right]$	$\begin{aligned} & 13.5 \\ & {[0.531]} \end{aligned}$	$\left.\begin{array}{c} 16 \\ {[0.630]} \end{array}\right]$	$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$

Single acting push type

Code Bore	12	16	20	25	32	40	50
X	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{gathered} \hline 14 \\ {[0.551]} \end{gathered}$	$\begin{array}{\|c\|} \hline 14.5 \\ {[0.571]} \end{array}$	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array}$	$\begin{gathered} \hline 17.5 \\ {[0.689]} \end{gathered}$	$\begin{gathered} 16.5 \\ {[0.650]} \end{gathered}$
Y	$\begin{gathered} 1 \\ {[0.039]} \end{gathered}$	$\begin{gathered} 1 \\ {[0.039]} \end{gathered}$	$\begin{gathered} \hline 7.5 \\ {[0.295]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7.5 \\ {[0.295]} \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ {[0.413]} \end{gathered}$

Single acting pull type

Code Bore	12	16	20	25	32	40	50
X	$\begin{gathered} 7 \\ {[0.276]} \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ {[0.276]} \end{gathered}$	$\begin{gathered} 11 \\ {[0.433]} \end{gathered}$	$\begin{gathered} 11 \\ {[0.433]} \end{gathered}$	$\begin{array}{\|c\|} \hline 13.5 \\ {[0.531]} \end{array}$	$\begin{array}{\|c\|} \hline 14.5 \\ {[0.571]} \end{array}$	$\begin{array}{\|c\|} \hline 12.5 \\ {[0.492]} \\ \hline \end{array}$
Y	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\begin{gathered} 12.5 \\ {[0.492]} \end{gathered}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{array}{\|c\|} \hline 13.5 \\ {[0.531]} \\ \hline \end{array}$	$\begin{gathered} 15.5 \\ {[0.610]} \end{gathered}$	$\begin{gathered} 14.5 \\ {[0.571]} \\ \hline \end{gathered}$

\square Reed switch type
Double acting type

Code - Bore		12	16	20	25	32	40	50	63	80	100
X	Standard type	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \end{array}$	$\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \end{array}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \\ & \hline \end{aligned}$
	With bumper (-R)	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{array}{\|c\|} \hline 11.5 \\ {[0.453]} \end{array}$	$\left.\begin{array}{c} 11 \\ {[0.433]} \end{array}\right]$	$\begin{array}{c\|} \hline 12 \\ {[0.472]} \end{array}$	$\begin{array}{\|c\|} \hline 9.5 \\ {[0.374]} \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{gathered} 15.5 \\ {[0.610]} \end{gathered}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \\ & \hline \end{aligned}$
Y	Standard type	$\left[\begin{array}{c} -0.5 \\ {[-0.020]} \end{array}\right]$	$\left[\begin{array}{l} -0.5 \\ {[-0.020]} \end{array}\right.$	$\left[\begin{array}{c} 3 \\ {[0.118]} \end{array}\right]$	$\left[\begin{array}{c} 4.5 \\ {[0.177]} \end{array}\right.$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 6 \\ {[0.236]} \end{gathered}$	$\left[\begin{array}{c} 10 \\ {[0.394]} \end{array}\right]$	$\begin{gathered} 11.5 \\ {[0.453]} \end{gathered}$	$\begin{gathered} 15.5 \\ {[0.610]} \end{gathered}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \end{aligned}$
	With bumper (-R)	$\begin{gathered} 1.5 \\ {[0.059]} \end{gathered}$	$\begin{gathered} 1.5 \\ {[0.059]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 4.5 \\ {[0.177]} \end{gathered}$	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ {[0.157]} \\ \hline \end{array}$	$\begin{array}{\|c\|} 9 \\ {[0.354]} \end{array}$	$\begin{array}{\|c\|} \hline 11.5 \\ {[0.453]} \end{array}$	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array}$	$\begin{aligned} & 20.5 \\ & {[0.807]} \\ & \hline \end{aligned}$

Single acting push type

Code Bore	12	16	20	25	32	40	50
X	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ {[0.413]} \end{gathered}$	$\begin{gathered} 9.5 \\ {[0.374]} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 11 \\ {[0.433]} \end{gathered}$	$\begin{gathered} 13 \\ {[0.512]} \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$
Y	$\begin{gathered} -3.5 \\ {[-0.138]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline-3.5 \\ {[-0.138]} \end{array}$	$\begin{gathered} 3 \\ {[0.118]} \end{gathered}$	$\begin{gathered} 1 \\ {[0.039]} \end{gathered}$	$\begin{array}{\|c} 2 \\ {[0.079]} \end{array}$	$\begin{gathered} 3 \\ {[0.118]} \end{gathered}$	$\begin{gathered} 6 \\ {[0.236]} \end{gathered}$

mm [in.]							
Code Bore	12	16	20	25	32	40	50
x	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.256]} \\ \hline \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.256]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$
Y	$\left[\begin{array}{c} 4.5 \\ {[0.177]} \end{array}\right.$	$\begin{gathered} 4.5 \\ {[0.177]} \end{gathered}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\begin{gathered} 9.5 \\ {[0.374]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\left[\begin{array}{c} 11 \\ {[0.433]} \end{array}\right.$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$

Lateral load resistant cylinders with magnet

Solid state type
Double acting type

Code Bore	12	16	20	25	32	40	50	63	80	100
X	$\begin{array}{c\|} \hline 10 \\ {[0.394]} \end{array}$	$\begin{array}{c\|} \hline 10 \\ {[0.394]} \end{array}$	$\begin{array}{\|c\|} \hline 15 \\ {[0.591]} \end{array}$	$\left\lvert\, \begin{gathered} 16 \\ {[0.630]} \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array}$	$\begin{array}{\|c\|} \hline 16.5 \\ {[0.650]} \end{array}$	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array}$	$\begin{array}{c\|} \hline 17.5 \\ {[0.689]} \end{array}$	$\begin{array}{\|l\|} \hline 26.5 \\ {[1.043]} \end{array}$	$\begin{aligned} & \hline 31.5 \\ & {[1.240]} \\ & \hline \end{aligned}$
Y	$\begin{gathered} \hline 6 \\ {[0.236]} \end{gathered}$	$\begin{gathered} \hline 6 \\ {[0.236]} \end{gathered}$	$\begin{array}{\|c\|} \hline 8.5 \\ {[0.335]} \end{array}$	$\left\lvert\, \begin{gathered} 9 \\ {[0.354]} \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 6.5 \\ {[0.256]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.5 \\ {[0.335]} \end{array}$	$\begin{array}{\|c\|} \hline 11.5 \\ {[0.453]} \end{array}$	$\begin{aligned} & 13.5 \\ & {[0.5311]} \end{aligned}$	$\begin{array}{\|c\|} \hline 18.5 \\ {[0.728]} \end{array}$	$\begin{aligned} & 23.5 \\ & {[0.925]} \\ & \hline \end{aligned}$

Reed switch type
Double acting type

Code	Bore		$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$
$\mathbf{1 0 0}$											
	5.5	5.5	10.5	11.5	11	12	11	13	22	27	
		$[0.217]$	$[0.217]$	$[0.413]$	$[0.453]$	$[0.433]$	$[0.472]$	$[0.433]$	$[0.512]$	$[0.866]$	$[1.063]$
\mathbf{Y}	1.5	1.5	4	4.5	2	4	7	9	14	19	
		$[0.059]$	$[0.059]$	$[0.157]$	$[0.177]$	$[0.079]$	$[0.157]$	$[0.276]$	$[0.354]$	$[0.551]$	$[0.748]$

Long stroke cylinders with magnet

Solid state type
Double acting type

Code Bore	12	16	20	25	32	40	50	63	80	100
X	15	15	20	21	20.5	21.5	20.5	22.5	31.5	36.5
	［0．591］	［0．591］	［0．787］	［0．827］	［0．807］	［0．846］	［0．807］	［0．886］	［1．240］	［1．437］
Y	12	12	15	14.5	13.5	15.5	12.5	13.5	18.5	23.5
	［0．472］	［0．472］	［0．591］	［0．571］	［0．531］	［0．610］	［0．492］	［0．531］	［0．728］	［0．925］

Reed switch type
Double acting type

Code Bore	12	16	20	25	32	40	50	63	80	100
X	$\left.\begin{array}{\|l\|} \hline 10.5 \\ {[0.413]} \end{array}\right]$	$\left.\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array} \right\rvert\,$	$\left.\begin{array}{\|l\|} \hline 16.5 \\ {[0.650} \end{array} \right\rvert\,$	$\left\|\begin{array}{c\|} \hline 16 \\ {[0.630]} \end{array}\right\|$	$\left\|\begin{array}{c} 17 \\ {[0.669]} \end{array}\right\|$	$\begin{array}{\|c\|} \hline 16 \\ 10.6301 \end{array}$	$\left.\begin{array}{\|c\|} \hline 18 \\ {[0.709]} \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 27 \\ {[1.063]} \end{array} \right\rvert\,$	$\begin{gathered} 32 \\ {[1.260]} \end{gathered}$
Y	$\begin{array}{\|c\|} \hline 7.5 \\ {[0.295]} \end{array}$	$\begin{array}{\|c\|} \hline 7.5 \\ {[0.295]} \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \end{array}$	$\left.\begin{array}{c} 9 \\ {[0.354]} \end{array}\right]$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \end{array}$	$\begin{array}{\|c} \hline 8 \\ {[0.315]} \\ \hline \end{array}$	$\left[\begin{array}{c} 9 \\ {[0.354]} \end{array}\right]$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{gathered} \hline 19 \\ {[0.748]} \\ \hline \end{gathered}$

End keep cylinder with magnet

Solid state type
OHead side end keep

Code Bore	16	20	25	32	40	50	63
X	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \end{array}$	$\begin{array}{\|c\|} \hline 20.5 \\ {[0.807]} \end{array}$	$\begin{gathered} 21.5 \\ {[0.846]} \end{gathered}$	$\begin{array}{\|c\|} \hline 20.5 \\ {[0.807]} \end{array}$	$\begin{array}{\|c\|} \hline 21.5 \\ {[0.846]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20.5 \\ {[0.807]} \end{array}$	$\begin{gathered} 22.5 \\ {[0.886]} \end{gathered}$
Y	$\begin{array}{\|c\|} \hline 36.5 \\ {[1.437]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 34.5 \\ {[1.358]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 34.5 \\ {[1.358]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 43.5 \\ {[1.713]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45.5 \\ {[1.791]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 51.5 \\ {[2.028]} \\ \hline \end{array}$	$\begin{gathered} 54.5 \\ {[2.146]} \\ \hline \end{gathered}$

Reed switch type
－Head side end keep

Code Bore	16	20	25	32	40	50	63
X	$\begin{array}{\|c} 11 \\ {[0.433]} \\ \hline \end{array}$	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	$\begin{array}{\|c\|} \hline 17 \\ {[0.669]} \\ \hline \end{array}$	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	$\begin{array}{\|c\|} \hline 17 \\ {[0.669]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 16 \\ {[0.630]} \\ \hline \end{array}$	$\begin{gathered} 16 \\ {[0.630]} \\ \hline \end{gathered}$
Y	$\begin{gathered} 32 \\ {[1.260]} \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ {[1.181]} \end{gathered}$	$\begin{gathered} 30 \\ {[1.181]} \end{gathered}$	$\begin{array}{\|c} 39 \\ {[1.535]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 41 \\ {[1.614]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 47 \\ {[1.850]} \\ \hline \end{array}$	$\begin{gathered} 50 \\ {[1.969]} \end{gathered}$

Solid state type
Rod side end keep

Code Bore	16	20	25	32	40	50	63
X	$\begin{gathered} 35.5 \\ {[1.398]} \end{gathered}$	$\begin{gathered} 35.5 \\ {[1.398]} \end{gathered}$	$\begin{gathered} \hline 36.5 \\ {[1.437]} \end{gathered}$	$\begin{array}{\|c\|} \hline 45.5 \\ {[1.791]} \\ \hline \end{array}$	$\begin{gathered} 46.5 \\ {[1.831]} \end{gathered}$	$\begin{array}{\|c\|} \hline 55.5 \\ {[2.185]} \end{array}$	$\begin{gathered} 57.5 \\ {[2.264]} \end{gathered}$
Y	$\begin{gathered} \hline 11.5 \\ {[0.453]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 14.5 \\ {[0.571]} \\ \hline \end{array}$	$\begin{gathered} \hline 14.5 \\ {[0.571]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 13.5 \\ {[0.531]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15.5 \\ {[0.610]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11.5 \\ {[0.453]} \\ \hline \end{array}$	$\begin{gathered} 13.5 \\ {[0.531]} \\ \hline \end{gathered}$

Reed switch type
Rod side end keep

Code Bore	16	20	25	32	40	50	63
X	$\begin{gathered} 31 \\ {[1.220]} \end{gathered}$	$\begin{gathered} 31 \\ {[1.220]} \end{gathered}$	$\begin{gathered} 32 \\ {[1.260]} \end{gathered}$	$\begin{array}{\|c\|} \hline 41 \\ {[1.614]} \\ \hline \end{array}$	$\begin{gathered} 42 \\ {[1.654]} \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ {[2.008]} \end{gathered}$	$\begin{gathered} 53 \\ {[2.087]} \end{gathered}$
Y	$\begin{gathered} 7 \\ {[0.276]} \end{gathered}$	$\begin{array}{\|c} 10 \\ {[0.394]} \end{array}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \\ \hline \end{array}$	$\begin{array}{\|c} 7 \\ {[0.276]} \\ \hline \end{array}$	$\begin{gathered} 9 \\ {[0.354]} \\ \hline \end{gathered}$

Body mounting

Jig cylinder mounting holes include both through holes with female mounting thread, and dedicated female mounting threads, for a variety of mountings. For details, see the diagrams below.

Standard cylinders, Double rod cylinders
Standard cylinders
Double rod cylinders
End keep cylinders
${ }_{\phi} 6 \sim \phi 12$
$\phi 16$
$\phi 20, \phi 25$
Lateral load resistant cylinders
$\phi 32 \sim \phi 100$

Remark: Mounting methods are the same regardless of bore sizes.

Non-rotating cylinders
$\phi 6, \phi 8, \phi 10$

Tandem cylinders
申 12

Square rod cylinders
ϕ 20, $\phi 25$ - 32~ 63

regardless of bore sizes.
However, the mounting method for "with centering location" differs from the figure above. See p. 153.
$\phi 32 \sim \phi 100$

Through hole with female thread.
Female thread on back side as well.

Remark: Mounting methods are the same regardless of bore sizes.

Dual stroke cylinders
$\phi 12$
Through hole with female thread

Notes: 1. Avoid applying lateral loads on the piston rod, with the exception of Lateral load resistant cylinders, Long stroke cylinders, and End keep cylinders.
2. When using through holes for mounting, always use the supplied dedicated washers. (except $\phi 6, \phi 8$, and $\phi 10$)
3. Mount an external stopper, etc., to prevent the cylinder from being subjected to direct shocks during operation.

Tightening thread of the end of piston rod

Since a tool (thin wrench) has been prepared for holding the piston rod when tightening the rod end thread, consult us.

Remark: Mounting methods are the same regardless of bore sizes.

- Always use the supplied dedicated washer whenever using a through bolt to directly mount the cylinder body in place.* Use the bolts shown in the table below to mount in place.
And for bolts used for direct mounting, see p.209.

※Washer not available for bore sizes $\phi 6, \phi 8$, and $\phi 10$.

Bore size $m m$ [in. $]$	6 $[0.236]$	8 $[0.315]$	10 $[0.394]$	12 $0.472]$	16 $[0.630]$	20 $[0.787]$	25 $[0.984]$	32 $[1.260]$	40 $[1.575]$	50 $[1.969]$	63 $[2.480]$	80 $[3.150]$	100 $[3.940]$
Hexagon socket head bolt nominal size	M 3	M 3	M 3	M 3	M 3	M 3	M 4	M 4	M 5	M 6	M 6	M 8	M 10

Bracket mounting

Foot mounting brackets cannot be installed on tandem cylinders and dual stroke cylinders.

- Flange mounting brackets cannot be installed on the head side of tandem cylinders and the stroke 1 side of dual stroke cylinders.
- Clevis mounting brackets cannot be installed on anything except for lateral load resistant cylinders, long stroke cylinders, and end keep cylinders.

Non-standard stroke

- In most cases, body cutting is used for the manufacturing for non-standard strokes.
However, body cutting is not used for strokes of less than 5 mm for $\phi 12$ [0.472in.] ~ 40 [1.575in.], and strokes of less than 10 mm for $\phi 50$ [1.969in.] $\sim \phi 100$ [3.940in.]. The collar packed is used for these cases. Moreover, sizes $\phi 6$ [0.236in.] $\sim \phi 10$ [0.394in.] are collar packed only. For delivery, consult us.
Rod side end keep cylinders cannot be collar packed.
- Dimensions

1. Additional strokes obtained by body cutting remain classed as non-standard strokes.
2. Additional strokes obtained by collar packed are classed as standard strokes in the longer one.

Lateral Load

Keep the lateral load on the rod end of the lateral load resistant cylinder, long stroke cylinder, and end keep cylinder, at or below the values shown in the graphs below.
Note: Avoid applying lateral load on any cylinder types other than the lateral load resistant cylinder, long stroke cylinder, and end keep cylinder.

Lateral load resistant cylinders

Standard type (CBDA)

$\phi 12$ [0.472in.] $\phi 20$ [0.787in.]
$\phi 25$ [0.984in.] $\boldsymbol{\phi} 40$ [1.575in.]

Cylinder with magnet (CBDAS)
$\phi 12$ [0.472in.]~ $\phi 20$ [0.787in.]

- $\phi 25$ [0.984in.] $\quad \phi 50$ [1.969in.]

Long stroke cylinders, End keep cylinders

- Standard type (CCDA,CCDAK)
$\phi 12$ [0.472in.] $\phi 20$ [0.787in.]

Cylinder with magnet (CCDAS, CCDAKS)
$\phi 12$ [0.472in.]~ $\phi 20$ [0.787in.]
$\phi 25$ [0.984in.] $\phi 40$ [1.575in.]

$\phi 50$ [1.969in.] $\boldsymbol{\phi} 100$ [3.940in.]

$1 \mathrm{~N}=0.2248 \mathrm{lbf}$.
$1 \mathrm{~mm}=0.0394 \mathrm{in}$.
$\phi 63$ [2.480in.]~ $\phi 100$ [3.940in.]

$1 \mathrm{~N}=0.2248 \mathrm{lbf}$.
$1 \mathrm{~mm}=0.0394 \mathrm{in}$.
$\phi 63$ [2.480in.] ~ 100 [3.940in.]

$1 \mathrm{~N}=0.2248 \mathrm{lbf}$.
$1 \mathrm{~mm}=0.0394 \mathrm{in}$.
$\phi 50$ [1.969in.]~ $\phi 100$ [3.940in.]

Single acting cylinders

Standard cylinders single acting push type Standard cylinders single acting pull type Double rod cylinders single acting type Tandem cylinders single acting push type Dual stroke cylinders single acting push type Dual stroke cylinders single acting pull type

If in the above types' application, air is being continuously applied from a connection port, and the spring remains in a compressed state for long periods of time, the piston may sometimes fail to return to its original position even after the air is exhausted. If equipment is to be used in this way over long periods of time, consult us.

End keep cylinder

Control circuit

1. For control of Jig end keep cylinders, we recommend the use of 2-position, 4-, 5-port valves. Avoid the use of a control circuit of ABR connections (exhaust centers) with 3position valves that exhaust air from 2 ports.
2. Always use meter-out control for speed control. Meter-in control may result in failure of the locking mechanism to release.

Notes: 1 . It is dangerous to supply air to a connection port on a side with a locking mechanism while already exhausted, because the piston rod could suddenly extend (retract). In addition, it could also cause galling of the lock piston and piston rod, resulting in defective operation. Always supply air to the connection port on the opposite side to ensure back pressure is applied.
2. When restarting operations after air has been exhausted from the cylinder due to completion of operations or to an emergency stop, always start by supplying air to the connection port on the opposite side of the locking mechanism.
3. Connect the valve port $A(N C)$ to the connection port on the side with the locking mechanism.

Manual operation of the locking

 mechanismWhile the locking mechanism is normally released automatically through cylinder operations, it can also be released manually. For manual release, insert an M3 $\times 0.5$ screw that has 30 mm [1.18in.] below head length into the manual override opening, thread it in about 3 turns into the internal lock piston, and then pull up the screw. To maintain the manual override for adjustment, etc., thread the locknut onto the screw and, with the locking mechanism in a released state, tighten

Notes:1.It is dangerous to release the lock when a load (weight) is present on the piston rod, because it may cause a sudden fall or cause the unintended piston rod's extension (retraction). In this case, always supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.
2. If the locking mechanism cannot easily be released even with manual override, it could be the result of galling of the lock piston and piston rod. In this case, supply air to the connection port opposite the one adjacent to the locking mechanism before releasing the locking mechanism.
3. Because water, oil, dust, etc., entering via the manual override opening could be a cause of defective locking or other erratic operation, use a cover, etc., for protection when using in locations subject to dripping water, dripping oil, or to large amounts of dust, etc.

Sensor switch

In the standard cylinder, a magnet for the sensor switch is not built-in.
To install a sensor switch, a cylinder with a built-in magnet for the sensor switch is required.

Notes:1.For the sensor switch mounting location and moving ranges, see p. 199.
2. Contact protection measures are required for connecting inductive loads to reed sensor switches or for when capacitive surges are generated. For contact protection measures, see p. 1566.

Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the cylinder. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

Atmosphere

1. If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.
2. The product cannot be used when the media or ambient atmosphere contains any of the substances listed below.
Organic solvents, phosphate ester type hydraulic oil, sulphur dioxide, chlorine gas, or acids, etc.

Lubrication

The product can be used without lubrication, if lubrication is required, use Turbine Oil Class 1 (ISO VG32) or equivalent.
Avoid using spindle oil or machine oil.

OPTIONAL ROD END SHAPE PATTERNS

Use an order form of rod end pattern and fill the items on the selected one from among 22 types of optional patterned shapes to obtain made－to－order cylinders of non－standard rod end shapes．The optional rod end shapes can be applied to the entire Jig Cylinders C Series．For the order form containing the optional patterned shapes，contact us．
（Except $\phi 6, \phi 8, \phi 10$ ）

Order Codes

C

\square

（For tandem and dual cylinders，use Bore size \times Stroke1 \times Stroke2）
Cylinder specification
Cylinder type

Piston Rod End Shape Pattern Diagrams（22 Types）

MOUNTING SCREWS FOR JIG CYLINDERS

Some types of mounting screws specifically for the Jig Cylinders are available.
Use the order codes below to place orders.
(1) Mounting screw type: JIS B 1176 Hexagon socket head cap screws

List of Order Codes (2) Surface treatment: Nickel plated

Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws
$6 \text { [0.236] }$	CRK124	M3×25	2
	CRK125	M 3×30	
	CRK126	M 3×35	
$\begin{array}{r} 8[0.315] \\ 10[0.394] \end{array}$	CRK127	M 3×40	
	CRK128	M 3×45	
	CRK129	M3×50	
$\begin{aligned} & 12[0.472] \\ & 16[0.630] \\ & 20[0.787] \end{aligned}$	CRK130	M 3×30	4
	CRK131	M3 $\times 35$	
$20 \text { [0.787] }$	CRK132	M 3×40	
	CRK133	M3 $\times 45$	
	CRK134	M 3×50	
$\begin{aligned} & 25[0.984] \\ & 32[1.260] \end{aligned}$	CRK135	M 4×30	4
	CRK136	M4×35	
	CRK137	M 4×40	
	CRK138	M 4×45	
	CRK139	M 4×50	
	CRK140	M 4×55	
	CRK141	M 4×60	
	CRK142	M 4×65	
	CRK143	M 4×70	
	CRK144	M 4×75	
40 [1.575]	CRK145	M 5×35	4
	CRK146	M5 $\times 40$	
	CRK147	M 5×45	
	CRK148	M 5×50	
	CRK149	M 5×55	
	CRK150	M5 $\times 60$	
	CRK151	M5 $\times 65$	
	CRK152	M 5×70	
	CRK153	M 5×75	
	CRK154	M 5×80	
	CRK155	M 5×85	
	CRK156	M 5×90	
	CRK157	M5 $\times 100$	
	CRK158	M5 $\times 110$	
$\begin{aligned} & 50[1.969] \\ & 63[2.480] \end{aligned}$	CRK159	M6×40	4
	CRK160	M6×45	
	CRK161	M6×50	
	CRK162	M6×55	
	CRK163	M6×60	
	CRK164	M6×65	
	CRK165	M6×70	
	CRK166	M6×75	
	CRK167	M6×80	
	CRK168	M6×85	
	CRK169	M6×90	
	CRK170	M6×100	
	CRK171	M6×110	
	CRK172	M6×120	
	CRK173	M6×130	
	CRK174	M6×140	
	CRK175	M6×150	

Applicable cylinder bore size mm [in.]	Mounting screw order code	Screw size	Number of supplied screws
80 [3.150]	CRK176	M8×60	4
	CRK177	M8×65	
	CRK178	M8×70	
	CRK179	M8×75	
	CRK180	M8×80	
	CRK181	M8×85	
	CRK182	M8×90	
	CRK183	M8×95	
	CRK184	M8×100	
	CRK185	M8×110	
	CRK186	M8×120	
	CRK187	M8×130	
	CRK188	M8×140	
	CRK189	M8×150	
	CRK190	M8×160	
	CRK191	M8×170	
100 [3.940]	CRK192	M10×65	4
	CRK193	M10×70	
	CRK194	M10×75	
	CRK195	M10×80	
	CRK196	M10×85	
	CRK197	M10×90	
	CRK198	M10×95	
	CRK199	$\mathrm{M} 10 \times 100$	
	CRK200	$\mathrm{M} 10 \times 110$	
	CRK201	$\mathrm{M} 10 \times 120$	
	CRK202	$\mathrm{M} 10 \times 130$	
	CRK203	$\mathrm{M} 10 \times 140$	
	CRK204	$\mathrm{M} 10 \times 150$	
	CRK205	M10×160	
	CRK206	$\mathrm{M} 10 \times 170$	

[^0]: Two figures in parentheses (), Left side: for head side; Right side: for rod side

