Koganei Clean System products provide complete support for the maintenance of a clean environment inside the cleanroom.

Koganei Clean System products meet the needs of the ultra-clean production environment. In everything from actuators and valves to air preparation and auxiliary equipment, anti-corrosion materials processing and other Koganei-developed design concepts serve to prevent particle contamination within the cleanroom. These perfectly designed mechanisms, which resolve even the slightest leaks to the outside during operations, have already won a high level of reliability.

Koganei Cleanliness

There is currently no standard in JIS or elsewhere for methods of evaluating cleanliness for pneumatic equipment in the cleanroom specifications. Therefore, to measure the effects of cleanroom contamination by pneumatic equipment, Koganei has decided to use "number of particles generated per 10 operations," rather than particle density. Koganei has also developed classifications for application classes in cleanroom, based on JIS and other upper limit density tables, and on the company's own experience.

Remarks: 1. In the above table, product performance in terms of the number of particles generated per 10 operations is expressed as the upper limit of particles corresponding to the equivalent JIS or ISO class.
2. In the above table, values in the JIS, ISO, and FED-STD upper limit density tables are calculated as upper density per liter.
3. The classes shown are clean levels as classified in JIS and ISO.

From the above definitions, the Koganei clean level classes can be viewed as the level of average contamination per liter of surrounding air over a period of 10 operations in cleanroom. Air ventilation in cleanrooms is usually faster than 1 cycle per minute, and clean volumetric capacity is usually larger than 1 liter, which should provide a sufficient safety margin in practice.

Caution: The above conclusions are based on an ideal situation in which air ventilation is being implemented. For specific cases where air ventilation is not ensured, caution is needed since the clean classes cannot be maintained.

The clean system diagrams shown here are for Class 5 equivalent products. For Class 4 or Class 3 equivalent products, consult us.

Evaluations of Cleanliness

Koganei has therefore specified its in-house measurement methods, to conduct evaluations on the cleanroom rating.

The number of particles of the Air Cylinder Cleanroom Specification is measured as shown in the method below.

1. Measurement conditions

1-1 Test circuit: Figure 1 (no suction), Figure 2 (with suction)

1-2 Operating conditions of tested cylinder
Operating frequency: 1 Hz
Average speed: $500 \mathrm{~mm} / \mathrm{s}$ [20in. $/ \mathrm{sec}$.]
Applied pressure: 0.5 MPa [73psi.]
Suction condition: Microejector ME05, Primary side: 0.5 MPa [73psi.] applied, Tube: $\phi 6$ [0.236in.]
Mounting direction: Vertical
Chamber volume: 8.3ℓ [0.293 $\mathrm{ft}{ }^{3}$]

2. Particle counter

Manufacturer/model: RION/KM20
Suction flow rate: $28.3 \mathrm{l} / \mathrm{min}$ [1 ft . $/ \mathrm{min}$.]
Particle diameter: $0.1 \mu \mathrm{~m}, 0.2 \mu \mathrm{~m}, 0.3 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 0.7 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}$

3. Measurement method

3-1 Confirmation of number of particles in the measurement system
Under the conditions in the above 1 and 2 , using a particle counter to measure the sample for 9 minutes without operating the measurement sample, and confirmed the measured number of particle is 1 piece or less.
3-2 Measurement under operation
Under the conditions in the above1 and 2, operating the measurement sample for 36 minutes, and measured the total values in the latter half of 18 minutes test.
3-3 Reconfirmation
Performed the measurement in 3-1 again, to reconfirm the number of particles in the measurement system.

4. Measurement results

- Cleanroom specification

Jig Cylinder (no suction from dust collection port)
Particle generation over 1 million operations (CS-CDA16×30)

- Cleanroom specification

Slim Cylinder (with suction from dust collection port)
Particle generation over 1 million operations (CS-DA20×100)

For "safety precautions" listed in the Clean System Product Drawings, see the materials below.

- For actuators, see "Safety Precautions" on p. 45 of the Actuators General Catalog .
- For valves, see "Safety Precautions" on p. 31 of the Valves General Catalog.
- For air treatment and auxiliary equipment, see "Safety Precautions" on p. 31 of the General Catalog of Air Treatment, Auxiliary, Vacuum.

Symbols

Specifications

Item Bore size mm [in.]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]
Operating type	Double acting type, with head side stroke end keep mechanism			
Media	Air			
Mounting type	Side mount			
Operating pressure range MPa [psi.]	$0.1 \sim 0.9$ [15~131]			
Proof pressure MPa [psi.]	1.32 [191]			
Operating temperature range ${ }^{\circ} \mathrm{C}$ [$\left.{ }^{\circ} \mathrm{F}\right]$	0~60 [32~140]			
Operating speed range $\quad \mathrm{mm} / \mathrm{s}$ [in./sec.]	$50 \sim 300$ [2.0~11.8]			
Cushion	Fixed type (Rubber bumper)			
Lubrication	Not required			
Maximum holding force (at end keep) N [lbf.]	194.2 [43.66]	303 [68.11]	496.2 [111.5]	775.7 [174.4]
Backlash (at end keep) mm [in.]	1.4 [0.055] MAX.		1.6 [0.063] MAX.	
Port size Rc	1/8			

Bore Size and Stroke

Remarks: 1. Stroke tolerance ${ }_{0}^{+1}\left[\begin{array}{c}+0.039] \\ 0\end{array}\right.$
2. For non-standard strokes, consult us.

Order Codes

[^0]

Major Parts and Materials

Parts Bore size mm		20, 25	32, 40
(1)	Piston rod A	Steel (chrome plated)	
(2)	Piston rod B	Stainless steel	
(3)	Spring	Stainless steel	Piano wire
(4)	Lock piston	Stainless steel	
(5)	Lock cover	Aluminum (anodized)	
	Y type knuckle, I type knuckle	Mild steel (nickel plated)	

Seals

Parts		Rod seal	Lock piston seal
Lock cover gasket			
Bore mmantity	1	1	1
$\mathbf{2 0}$	GYH-9	MYN-5	-
$\mathbf{2 5}$	GYH-11	MYN-5	-
$\mathbf{3 2}$	-	MYN-10A	S18
40	-	MYN10-A	S18

Other than the items listed above, it is the same as for the standard Slim Cylinder.

Mass

			g [oz.]		
Bore size mm [in.]	Zero stroke mass	Additional mass for each 1 mm .] stroke	Mass of knuckle		
	-HL : Head side end keep Side mount		Y type knuckle	I type knuckle	
20 [0.787]	210 [7.41]	0.8 [0.028]	41 [1.45]	36 [1.27]	
25 [0.984]	310 [10.93]	1.1 [0.039]			
32 [1.260]	500 [17.64]	1.5 [0.053]	75 [2.65]	70 [2.47]	
40 [1.575]	900 [31.75]	2.4 [0.085]	120 [4.23]	132 [4.66]	

[^1]
$\phi 20 \sim \phi 40$

$<$ Viewed from A>

The drawings for sizes $\phi 32$ and $\phi 40$ (The outward shape of the size $\phi 20$ and $\phi 25$ head covers is larger than the block portion.)

Bore Code	C	E	G	H	1	J	K	R	S	U	U_{1}	V	W
20 [0.787]	60 [2.362]	23 [0.906]	28 [1.102]	15 [0.591]	12 [0.472]	5 [0.197]	M8×1	16 [0.630]	6 [0.236]	29 [1.142]	20 [0.787]	8 [0.315]	6 [0.236]
25 [0.984]	60 [2.362]	26 [1.024]	30 [1.181]	18 [0.709]	14 [0.551]	6 [0.236]	M10×1.25	16 [0.630]	6 [0.236]	35 [1.378]	22 [0.866]	10 [0.394]	8 [0.315]
32 [1.260]	72 [2.835]	31 [1.220]	36 [1.417]	23 [0.906]	14 [0.551]	6 [0.236]	M10×1.25	26 [1.024]	1 [0.039]	35 [1.378]	27 [1.063]	12 [0.472]	10 [0.394]
40 [1.575]	79 [3.110]	31 [1.220]	44 [1.732]	23 [0.906]	19 [0.748]	8 [0.315]	M14×1.5	32 [1.260]	1 [0.039]	41.6 [1.638]	33 [1.299]	16 [0.630]	14 [0.551]

Bore Code	AA	AB	AD	AE	AF	AG	AH	AI	AN	AP	EA	EB	EC	EE	EF	EO
20 [0.787]	$\begin{array}{\|c\|} \hline 131 \\ {[5.157]} \end{array}$	$\begin{array}{\|c\|} \hline 48 \\ {[1.890]} \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ {[0.433]} \end{array}$	$\begin{array}{\|c\|} \hline 38 \\ {[1.496]} \\ \hline \end{array}$	$\begin{gathered} 22 \\ {[0.866]} \end{gathered}$	$\begin{gathered} 83 \\ {[3.268]} \end{gathered}$	$\begin{array}{\|c} \hline 28 \\ {[1.102]} \end{array}$	$\begin{array}{\|c\|} \hline 14 \\ {[0.551]} \end{array}$	$\begin{gathered} 9 \\ {[0.354]} \end{gathered}$	$\phi 6.6$ [0.260] Counterbore $\phi 11$ [0.433] Depth 6.5 [0.256]	$\begin{array}{\|c} \hline 16 \\ {[0.630]} \end{array}$		$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	$\begin{array}{\|c\|} \hline 24 \\ {[0.945]} \end{array}$	$\begin{array}{\|c\|} \hline 38.5 \\ {[1.516]} \end{array}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$
25 [0.984]	$\begin{gathered} 136 \\ {[5.354]} \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ {[2.047]} \end{gathered}$	$\begin{gathered} 12 \\ {[0.472]} \end{gathered}$	$\begin{array}{\|c\|} \hline 42 \\ {[1.654]} \\ \hline \end{array}$	$\begin{gathered} 26 \\ {[1.024]} \end{gathered}$	$\begin{gathered} 84 \\ {[3.307]} \end{gathered}$	$\begin{gathered} \hline 30 \\ {[1.181]} \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ {[0.591]} \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\phi 6.6$ [0.260] Counterbore $\phi 11$ [0.433] Depth 6.5 [0.256]	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	-	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	$\begin{array}{c\|} \hline 25 \\ {[0.984]} \\ \hline \end{array}$	$\begin{gathered} \hline 42.5 \\ {[1.673]} \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$
32 [1.260]	$\begin{gathered} 154 \\ {[6.063]} \end{gathered}$	$\begin{gathered} 59 \\ {[2.323]} \end{gathered}$	$\begin{array}{\|c\|} \hline 14 \\ {[0.551]} \end{array}$	$\left[\begin{array}{c} 54 \\ {[2.126]} \end{array}\right.$	$\begin{gathered} \hline 34 \\ {[1.339]} \end{gathered}$	$\begin{gathered} 95 \\ {[3.740]} \end{gathered}$	$\begin{gathered} 36 \\ {[1.417]} \end{gathered}$	$\begin{gathered} 18 \\ {[0.709]} \end{gathered}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{gathered} \phi 9[0.354] \text { Counterbore } \phi 14 \text { [0.551] } \\ \text { Depth } 8.6[0.339] \end{gathered}$	$\begin{gathered} 24 \\ {[0.945]} \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$	$\begin{array}{c\|} \hline 30 \\ {[1.181]} \\ \hline \end{array}$	$\begin{aligned} & (40.5) \\ & (1.594) \end{aligned}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$
40 [1.575]	[6.654]	$\begin{gathered} 62 \\ {[2.441]} \end{gathered}$	$\begin{gathered} 17 \\ {[0.669]} \end{gathered}$	$\left[\begin{array}{c} 68 \\ {[2.677]} \end{array}\right.$	$\begin{gathered} \hline 46 \\ {[1.811]} \end{gathered}$	$\begin{gathered} 107 \\ {[4.213]} \end{gathered}$	$\begin{gathered} 44 \\ {[1.732]} \end{gathered}$	$\begin{array}{\|c\|} \hline 22 \\ {[0.866]} \end{array}$	$\begin{gathered} 19 \\ {[0.748]} \end{gathered}$	$\begin{gathered} \phi 11 \text { [0.433] Counterbore } \phi 17.5 \text { [0.689] } \\ \text { Depth } 10.8 \text { [0.425] } \end{gathered}$	$\begin{gathered} 24 \\ {[0.945]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 25 \\ {[0.984]} \end{gathered}$	$\begin{gathered} 32.5 \\ {[1.280]} \end{gathered}$	$\begin{gathered} \hline(46) \\ (1.811) \end{gathered}$	$\begin{array}{\|c\|} \hline 16 \\ {[0.630]} \end{array}$

Since a magnet comes standard in the Slim cylinders series, mounting a sensor switch will enable use in sensor switch applications.

Symbol

Order Codes

Order codes for sensor switch with mounting strap

Clean system product

Order codes for sensor switch only

Clean system product

- Order codes for mounting strap only

Cylinder basic type
DA ——Excluding DAB $\phi 16$ and DABK $\phi 16$ DAB ___ For block cylinder DAB $\phi 16$
DABK_-For block end keep cylinder DABK $\phi 16$
$\mathbf{S} \quad$ For sensor switch type $\mathbf{C S} \square \mathbf{F}$
Mounting strap type
G5 - Solid state type For ZG5 $\square \square$ Reed switch type For CS \square M
F _ Reed switch type For CS $\square \mathbf{F}$

Two pieces mounting One piece mounting - When mounted in-line

When mounted in staggered positions

Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

- Operating range : ℓ

The distance the piston travels in one direction, while the switch is in the ON position.

- Response differential : C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

Item \quad Bore size		16 [0.630]	20 [0.787]	25 [0.984]	32 [1.260]	40 [1.575]	50 [1.969]	63 [2.480]
Operating range : ℓ	ZG530 \square	$\begin{gathered} 2.5 \sim 4.1 \\ {[0.098 \sim 0.161]} \end{gathered}$	$\begin{gathered} 2.5 \sim 4.2 \\ {[0.098 \sim 0.165]} \end{gathered}$	$\left\|\begin{array}{c} 2.6 \sim 4.3 \\ {[0.102 \sim 0.169]} \end{array}\right\|$	$\begin{array}{c\|} \hline 3.0 \sim 4.8 \\ {[0.118 \sim 0.189]} \end{array}$	$\begin{array}{c\|} \hline 3.1 \sim 5.0 \\ {[0.122 \sim 0.197]} \\ \hline \end{array}$	$\begin{gathered} 3.3 \sim 5.4 \\ {[0.130 \sim 0.213]} \\ \hline \end{gathered}$	$\begin{gathered} 3.5 \sim 5.7 \\ {[0.138 \sim 0.224]} \end{gathered}$
	ZG533 \square							
	CS \square M	6.7~7[0.264~0.276]	7~8.5[0.276~0.335]	7~8.5 [0.276~0.335]	8~9 [0.315~0.354]	9~10.5 [0.354~0.413]	7~8[0.276~0.315]	8~9.5 [0.315~0.374]
	CS \square F	-	7~8.5[0.276~0.335]	8.5~10 [0.335~0.394]	9~10.5 [0.354~0.413]	10.5~12 [0.413~0.472]	9~10 [0.354~0.394]	9~10.5 [0.354~0.413]
Response differential : C	ZG530	0.7 [0.028] or less	0.7 [0.028] or less	0.8 [0.032] or less	0.7 [0.028] or less	0.8 [0.032] or less	0.8 [0.032] or less	0.8 [0.032] or less
	ZG533	0.7 [0.028] or less	0.7 [0.028] or less	0.8 [0.032] or less	0.7 [0.028] or less	0.8 [0.032] or less	0.8 [0.032] or less	0.8 [0.032] or less
	CS \square M	1 [0.039] or less	1.2 [0.047] or less	$1.2[0.047]$ or less				
	CS $\square \mathrm{F}$	-	1.5 [0.059] or less	2 [0.079] or less	$1.5[0.059]$ or less			
Maximum sensing location	ZG530, ZG553 ${ }^{\text {Note } 1}$	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]
	CS $\square \mathbf{M}^{\text {Note } 1}$	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]	11 [0.433]
	CS $\square \mathrm{F}^{\text {Note } 2}$	-	16 [0.630]	16 [0.630]	16 [0.630]	16 [0.630]	16 [0.630]	16 [0.630]

Remark : Figures in the table above are reference values.
Notes: 1. Figures are from the end surface that is opposite to the lead wires.
2. Figures are from the end surface of the connector side.

When the sensor switch is mounted in the location shown in the diagram below (figures in the table are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.

Double acting cylinder

Sensorswitch model		Double acting cylinder					
		20	32	32	40	50	63
$\begin{aligned} & \text { ZG530 } \\ & \text { ZG553 } \square \end{aligned}$	A	$\begin{array}{\|c\|} \hline 37 \\ {[1.456]} \end{array}$	$\begin{array}{c\|} 37 \\ {[1.456]} \end{array}$	$\begin{gathered} 37 \\ {[1.456]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 38.5 \\ {[1.516]} \end{array}$	$\begin{gathered} 45 \\ {[1.772]} \end{gathered}$	$\begin{array}{\|c} 45 \\ {[1.772]} \\ \hline \end{array}$
	B	$\begin{array}{c\|} 27 \\ {[1.063]} \end{array}$	$\begin{gathered} 27 \\ {[1.063]} \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ {[1.063]} \end{gathered}$	$\begin{gathered} 27 \\ {[1.063]} \end{gathered}$	$\begin{gathered} 36 \\ {[1.417]} \end{gathered}$	$\begin{array}{\|c} 36 \\ {[1.417]} \\ \hline \end{array}$
CS $\square \mathrm{M}$	A	$\begin{gathered} 37 \\ {[1.456]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 37 \\ {[1.456]} \\ \hline \end{array}$	$\begin{gathered} 37 \\ {[1.456]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 38.5 \\ {[1.516]} \\ \hline \end{array}$	$\begin{gathered} 45 \\ {[1.772]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 45 \\ {[1.772]} \\ \hline \end{array}$
	B	$\begin{array}{c\|} \hline 27 \\ {[1.063]} \end{array}$	$\begin{array}{c\|} \hline 27 \\ {[1.063]} \end{array}$	$\begin{gathered} 27 \\ {[1.063]} \end{gathered}$	$\begin{gathered} 27 \\ {[1.063]} \end{gathered}$	$\begin{gathered} 36 \\ {[1.417]} \end{gathered}$	$\begin{array}{\|c} \hline 36 \\ {[1.417]} \\ \hline \end{array}$
CS $\square \mathrm{F}$	A	$\begin{array}{c\|} \hline 32 \\ {[1.260]} \end{array}$	$\begin{array}{c\|} 32 \\ {[1.260]} \end{array}$	$\begin{gathered} 32 \\ {[1.260]} \end{gathered}$	$\begin{gathered} 32 \\ {[1.260]} \end{gathered}$	$\begin{gathered} 41 \\ {[1.614]} \end{gathered}$	$\begin{array}{\|c} 41 \\ {[1.614]} \\ \hline \end{array}$
	B	$\begin{gathered} 22 \\ {[0.866]} \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ {[0.866]} \end{gathered}$	$\begin{array}{c\|} \hline 22 \\ {[0.866]} \\ \hline \end{array}$	$\begin{gathered} 22 \\ {[0.866]} \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ {[1.260]} \end{gathered}$	$\begin{array}{\|c\|} \hline 32 \\ {[1.260]} \\ \hline \end{array}$

Bore size		16	20	25	32	40	50	63	16	20	25	32	40	50	63	
$\begin{aligned} & \text { ZG530 } \\ & \text { ZG553 } \end{aligned}$	A Rod side	$\begin{gathered} 42 \\ {[1.654]} \end{gathered}$	$\begin{gathered} 53 \\ {[2.087]} \end{gathered}$	$\begin{gathered} 55 \\ {[2.165]} \\ \hline \end{gathered}$	$\left[\begin{array}{l} 61 \\ {[2.42]} \end{array}\right.$	$\begin{gathered} 71 \\ \hline(2.755] \end{gathered}$	81	$\begin{array}{\|c} 81 \\ {[3.189]} \end{array}$	$\begin{gathered} 33 \\ \hline 1.299] \end{gathered}$	$\begin{gathered} 37 \\ {[1.557]} \end{gathered}$	$[37$	$\begin{aligned} & 37 \\ & \left.\hline 1.45^{\prime}\right] \end{aligned}$	$\begin{gathered} 39 \\ 11.5355 \end{gathered}$	$\begin{gathered} 47 \\ {[1.850 \\|} \end{gathered}$	$\left\lvert\, \begin{aligned} & 47 \\ & \text { py } \\ & {[1.850]} \end{aligned}\right.$	
	B Rod side	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	$\begin{array}{\|c\|} \hline 20 \\ \hline 0.877 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \\ \hline 0.877 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21 \\ \hline 0.827 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ \hline(0.844] \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 45 \\ \hline 1.722 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 45 \\ \hline 1.722 \\ \hline \end{array}$	$\begin{gathered} 16 \\ {[0.630]} \end{gathered}$	$\begin{array}{\|c\|} \hline 20 \\ \hline 0.877 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 20 \\ \hline 0.787 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21 \\ {[0.827]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ \hline 0.944] \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 45 \\ & 45 \\ & \mid 1.722 \end{aligned}\right.$	$\left[\begin{array}{l} 45 \\ \hline 1.722 \\ \hline \end{array}\right.$	
CS $\square \mathrm{M}$	A Rod side	$\begin{gathered} 42 \\ {[1.544]} \end{gathered}$	$\begin{gathered} 53 \\ {[2.087]} \end{gathered}$	$\begin{gathered} 55 \\ {[2.165]} \\ \hline \end{gathered}$	$\begin{aligned} & 61 \\ & {[2.420]} \\ & \hline \end{aligned}$	$\begin{gathered} 71 \\ \hline(2,75) \end{gathered}$	$\begin{aligned} & 80 \\ & \hline(3.150) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 80 \\ \hline(3.150) \\ \hline \end{array}$	$\begin{gathered} 33 \\ \hline 1.299] \end{gathered}$	$\begin{gathered} 37 \\ \hline 1.457] \\ \hline \end{gathered}$	37	$\begin{aligned} & 37 \\ & {[1.55]} \\ & \hline \end{aligned}$	$\begin{gathered} 39 \\ \hline 1.553] \end{gathered}$	$\left\lvert\, \begin{gathered} 46 \\ 46.811] \\ \hline \end{gathered}\right.$	$\begin{aligned} & 46 \\ & 46.111 \end{aligned}$	
	B Rod side	$\begin{gathered} 16 \\ {[0.630)} \end{gathered}$	$\begin{gathered} 20 \\ {[0.78]} \end{gathered}$	$\left[\begin{array}{c} 20 \\ {[0.787} \end{array}\right.$	$\left[\begin{array}{c} 21 \\ {[0.827]} \end{array}\right.$	$\begin{gathered} 25 \\ {[0.884]} \end{gathered}$	$\left[\begin{array}{l} 44 \\ {[1.732]} \end{array}\right.$	$\left[\begin{array}{l} 44 \\ {[1.732]} \end{array}\right.$	$\begin{gathered} 16 \\ 10.630) \end{gathered}$	$\begin{gathered} 20 \\ {[0.78]} \end{gathered}$	$\left[\begin{array}{c} 20 \\ {[0.787]} \end{array}\right.$	$\left[\begin{array}{c} 21 \\ {[0.827]} \end{array}\right.$	$\left[\begin{array}{c} 25 \\ {[0.984]} \end{array}\right.$	$\left.\begin{array}{c} 44 \\ {[1.732]} \end{array}\right]$	$\begin{gathered} 44 \\ {[1.732]} \\ \hline \end{gathered}$	
CS $\square \mathrm{F}$	A Rod side	-	$\begin{gathered} 50 \\ {[1.969]} \end{gathered}$	$\begin{gathered} 52 \\ {[2047]} \end{gathered}$	$\begin{array}{\|c\|} \hline 58 \\ {[2.283]} \end{array}$	$\begin{gathered} 66 \\ {[2.588]} \end{gathered}$	$\begin{array}{\|c\|} \hline 78 \\ \hline(3.071] \end{array}$	$\begin{array}{\|c\|} \hline 78 \\ {[3.071]} \end{array}$	-	$\begin{gathered} 34 \\ {[1.399]} \end{gathered}$	$\begin{array}{\|c\|} \hline 34 \\ 34 \\ \hline 1.399 \end{array}$	$\begin{aligned} & \hline 34 \\ & {[1.399]} \end{aligned}$	$\begin{aligned} & \hline 34 \\ & {[1.399]} \end{aligned}$	44	$\begin{gathered} 44 \\ {[1.732]} \end{gathered}$	
	B Rod side	-	$\begin{gathered} 17 \\ {[0.669]} \end{gathered}$	$\begin{gathered} 17 \\ \hline 0.669 \\ \hline \end{gathered}$	$\left[\begin{array}{c} 18 \\ {[0.709]} \end{array}\right.$	$\left[\begin{array}{c} 20 \\ {[0.787]} \end{array}\right.$	$\begin{aligned} & 42 \\ & {[1.654} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 42 \\ {[1.654} \end{array}$	-	$\begin{gathered} 17 \\ {[0.669]} \end{gathered}$	$\begin{array}{\|c} 17 \\ 8 \\ \hline 0.669 \\ \hline \end{array}$	$\begin{gathered} 18 \\ {[0.709]} \end{gathered}$	$\left[\begin{array}{c} 22 \\ {[0.866]} \end{array}\right.$	$\begin{gathered} 42 \\ 11.644 \end{gathered}$	$\left[\begin{array}{l} 42 \\ {[1.654]} \end{array}\right.$	

Moving Sensor Switch

OZG530
ZG553
CS $\square \mathbf{M}$

- Loosening the mounting screw allows the sensor switch to be moved freely along with the strap in the axial and circumferential direction. The sensor switch alone cannot be moved.
- To remove the sensor switch from the strap, first detach the strap from the cylinder tube and then remove the sensor switch from the strap.
- Tighten the mounting screw with a tightening torque of $49 \mathrm{~N} \cdot \mathrm{~cm}$ [4.3in•lbf] or less.

CS $\square \mathrm{F}$

Loosening the mounting screw allows the sensor switch to be moved freely in the axial and circumferential direction.

- Slightly loosening the mounting screw allows fine adjustment of the lead switch only, up to 5 mm [0.197in.] in the axial direction. Tighten the mounting screw with a tightening torque of $68.6 \mathrm{~N} \cdot \mathrm{~cm}$ [6.1in $\cdot \mathrm{lbf}$] or less.

Dimensions of Sensor Switch mm [in.]

[^0]: For the order codes of additional parts, see p. 64.

[^1]: Calculation example: For head side end keep side mount type of 32 mm bore size and 100 mm stroke, $500+(1.5 \times 100)=650 \mathrm{~g}$ [22.93 oz.]

