## WT SLIDE TABLES CONTENTS

Features ..... 1017
Handling Instructions and Precautions ..... 1019
Specifications ..... 1023
Order Codes ..... 1024
Inner Construction, Major Parts and Materials ..... 1025
Dimensions of AWT16 ..... 1026
Dimensions of AWT20 ..... 1027
Sensor Switches ..... 1028

## WTSLIDE TABLES

The Alpha Series WT slide table uses a wide type linear guide which offers for more stable movement and rigidity. It is an easy-to-use high-performance actuator with wider stroke adjusting range.

## Wider linear guide^ with improved rigidity


OCylinder bore size: $\phi 16$ [0.630in.], $\phi 20$ [0.787in.]
-Standard strokes: 50, 100, 150, 200mm
(Stroke adjusting range: $0 \sim-64 \mathrm{~mm}$ [ $0 \sim-2.520 \mathrm{in}$.$] ( \phi$ 16),)

$$
0 \sim-58 \mathrm{~mm}[0 \sim-2.283 \mathrm{in} .](\phi 20))
$$

Allowable yawing moment (1)
$\phi 16: \mathbf{2 4} \mathbf{N} \cdot \mathbf{m}[17.7 \mathrm{ff} \cdot \mathrm{llff]}$
$\phi 20: \mathbf{3 0} \mathbf{N} \cdot \mathbf{m}[22.1 \mathrm{ft} \cdot \mathrm{lbf}]$

## Allowable static load 7000N [1574lbf.] <br> (For $\phi$ 20) $6000 \mathrm{Nr}^{[1349 \mathrm{lbf} .]}$ <br> (For $\phi 16$ )

- Allowable rolling moment (Mr)
$\phi 16: \mathbf{2 7} \mathrm{N} \cdot \mathrm{m}[19.9 \mathrm{ft} \cdot \mathrm{bf}]$
ф20 : 44N.m [32.5t lbf]

High rigidity and wider linear guide
Rigidity valuing design with wider linear guide and 2 sliders allows larger moments.


Stroke adiustmentioi $-32^{(416)}$
 and -29 mim $-1.1 .20 i \mathrm{inj}$ ( one side) Enables fine adjustments of the stroke up to $-64 \mathrm{~mm}[-2.520 \mathrm{in}$.$] ( \phi 16[0.630 \mathrm{in}].),-58 \mathrm{~mm}[-2.283 \mathrm{in}]$ ] $\phi 20$ [0.787in.]) on both sides by adjusting the position of the stopper bolt and the block.


For details, see p. 1022.

## Shock absorbers as standard equipment

Fixed absorption capacity type shock absorbers that improve repeatability at the end of the stroke, and reduce shocks and noise, are standard equipment.


For details, see p. 1020.

## Plus precision

We have added advanced positioning precision and high rigidity to the pneumatic actuator.
The Koganei Alpha Series further enhances the drive module concept, supporting superior applications and labor savings in FA line design and manufacturing with higher performance.

## and larger static load capacity!

It is the best for transfer of the base in press fitting or crimping process, and pick \& place or pick \& load operations, etc.

Press fitting and crimping
 application example


Pick \& place application example

## Embedded type sensor switch

An embedded type sensor switch which does not protrude from the body can be installed.


For details, see p. 1028.

## Thin shaped body \& compact design

It realizes a slim appearance by a thin body design with low table height.


The values in parentheses ( ) are for $\phi 20$ [0.787in.].


## General precautions

## Piping

Always thoroughly blow off (use compressed air) the tubing before connecting it to the WT slide table. Entering chips, sealing tape, rust, etc., generated during piping work could result in air leaks or other defective operation.

## Atmosphere

If using in locations subject to dripping water, dripping oil, etc., or to large amounts of dust, use a cover to protect the unit.

## Media

1. Use air for the media. For the use of any other media, consult us.
2. Air used for the WT slide table should be clean air that contains no deteriorated compressor oil, etc. Install an air filter (filtration of a minimum $40 \mu \mathrm{~m}$ ) near the WT slide table or valve to remove collected liquid or dust. In addition, drain the air filter periodically.

## Lubrication

1. The product can be used without lubrication. If lubrication is required, use Turbine Oil Class 1 (ISO VG32) or lithium soap-based No. 2 equivalent.
2. Apply lithium soap-based grease on the raceway surfaces of the track rail in the guide portion every 6 months or every 300km [186mi.] of traveling distance.


Although the WT slide table can be used by directly applying the load, make sure that the load and moments do not exceed the values in the table below.


Pitching moment : $\mathrm{Mp}=\mathrm{Fp} \times \mathrm{r} 1$ ( $\mathrm{N} \cdot \mathrm{m}$ )
Rolling moment : $\mathrm{Mr}=\mathrm{Fr} \times \mathrm{r} 2(\mathrm{~N} \cdot \mathrm{~m})$
Yawing moment : $\mathrm{My}=\mathrm{Fy} \times \mathrm{r} 2(\mathrm{~N} \cdot \mathrm{~m})$
Allowable static load : $\mathrm{W}_{1}(\mathrm{~N})$
Maximum load capacity: $\mathrm{W}_{2}(\mathrm{~N})$

| Model | Stroke | e 50 | 100 | 150 |  | 200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AWT16 | A | 80 [3.15] | 80 [3.15] | ] 105 [4 |  | 30 [5.12] |
|  | B | 48 [1.89] |  |  |  |  |
| AWT20 | A | 85 [3.35] | 85 [3.35] | ] 110 [4 |  | 35 [5.31] |
|  | B | 58 [2.28] |  |  |  |  |
|  Allowable <br> Model moment |  | Mp (Pitching) $\mathrm{N} \cdot \mathrm{m}$ [ft-lbf] | Mr (Rolling) $\mathrm{N} \cdot \mathrm{m}$ [ft-lbf] | My (Yawing) N.m [ft-lbf] | W 1 N [lbf.] | W2 N [lbf.] |
| AWT16 |  | 28 [20.7] | 27 [19.9] | 24 [17.7] | 6000 [1349] | 150 [33.7] |
| AWT20 |  | 33 [24.3] | 44 [32.5] | 30 [22.1] | 7000 [1574] | 200 [45.0] |

Caution: The moment including the inertia force generated when the load is moved or stopped must not exceed the values in the above table.
Keep the load and the speed within a range of the shock absorber capacity graph.

Selection and installation

## Displacement of table end caused by allowable bending moment (reference value)

## -AWT16



- AWT20


Pitching and yawing


Pitching and yawing

$1 \mathrm{~N} \cdot \mathrm{~m}=0.7376 \mathrm{ft} \cdot \mathrm{lbf}$
$1 \mathrm{~mm}=0.0394 \mathrm{in}$.

## Shock absorber absorption capacity

The WT slide table is equipped with shock absorbers as standard equipment, but the mass and the impact speed which can be absorbed should be within the ranges of the "Shock absorber capacity graph" below. It cannot be used with speeds in excess of the maximum operating speed of $1000 \mathrm{~mm} / \mathrm{s}$ [39.4in./sec.].

## Shock absorber capacity graph



Remark: On horizontal mounting at air pressure 0.5 Mpa [73psi.]

[^0]
## Replacing the shock absorber

The WT slide table is equipped with shock absorbers as standard equipment. A ring wrench is needed for replacing the shock absorber, and prepare it in advance.

## Removing

(1) Using a ring wrench, turn the hex-head portion on the shock absorber body and loosen the shock absorber.
(2) Turn the body thread of the shock absorber until it comes off, and pull it out of the tapped hole.

## Mounting

(1) Thread the shock absorber until the hex-head portion of the body contacts the tapped hole of the table. (Remove any hexagon nuts which have been already attached to the shock absorber)
(2) Tighten the hex-head portion on the shock absorber body with the ring wrench, and secure it.


Tightening torque of the shock absorber

| Model | Tightening torque <br> $\mathrm{N} \cdot \mathrm{cm}[\mathrm{in} \cdot \mathrm{lbf}]$ | Width across flats of <br> the hex-head $\mathrm{mm}[\mathrm{in}]$. |
| :---: | :---: | :---: |
| AWT16 $($ KSHA6 $\times \mathbf{8 - E - X})$ | $637[56]$ | $12[0.472]$ |
| AWT20 $($ KSHA7 $\times \mathbf{8}-\mathrm{G}-\mathbf{X})$ | $1177[104]$ | $14[0.551]$ |

Remark: For securing the shock absorber, tighten the hex-head portion using the above values as references.

Cautions: 1. Adjust it so that the stopper bolt on the main body and the shock absorber make full contact.
2. Use the shock absorber within the range of the absorption capacity of the shock absorber (refers to shock absorber capacity graph). Note that the absorption energy of the shock absorber is different in a low-speed range than that in a highspeed range.
3. The impact maximum speed of the shock absorber is $1000 \mathrm{~mm} / \mathrm{s}$ [39.4in. $/ \mathrm{sec}$.]. The speed when it just collides must not exceed $1000 \mathrm{~mm} / \mathrm{s}$ [ $39.4 \mathrm{in} . / \mathrm{sec}$.] since it differs from the average speed. Moreover, consult us when it exceeds $1000 \mathrm{~mm} / \mathrm{s}$ [39.4in./sec.].
4. Do not use the shock absorber in a place where water or oil drips. If using it in these places, install a cover, etc., so the drops do not hit it directly. This could lead to improper operation and may decrease the absorption capacity.
5. Do not loosen the small screw on the rear end of the shock absorber. The oil inside will leak out which will fail the function of the shock absorber.
6. Do not install other shock absorbers in this product without permission. When other shock absorbers are used, damage to the cylinder, etc., may occur.

## Calculation of impact energy

| Horizontal impact |  |
| :---: | :---: |
| $\mathrm{E}=\mathrm{E}_{1}+\mathrm{E}_{2}$ <br> $=\frac{\mathrm{m} \cdot v^{2}}{2}$ <br> $=\mathrm{F} \cdot \mathrm{L}$ | $\mathrm{E}^{\prime}=\mathrm{E}_{1}+\mathrm{E}^{\prime} 2$ <br> $=$ <br> $\mathrm{W}^{\prime} \cdot v^{\prime 2}$ <br> $2 \mathrm{~g}^{\prime}$ |



Note 1: For impact on incline, $\mathrm{E}_{3}$ becomes $\mathrm{E}_{3^{\prime}}=\mathrm{m} \cdot \mathrm{g} \cdot \mathrm{L} \cdot \sin \theta$.

Note 1: For impact on incline, $\mathrm{E}^{\prime}{ }_{3}$ becomes $\mathrm{E}^{\prime \prime}{ }_{3}=\mathrm{W} \cdot \mathrm{L}^{\prime} \cdot \sin \theta$.


Note 2: When descending, the operating air pressure: P , should be lower than when ascending, because heavier loads can be carried.

E : Total impact energy $\cdots[\mathrm{J}]$
$\mathrm{E}_{1}:$ Kinetic energy $\cdots \frac{\mathrm{m} \cdot v^{2}}{2}[\mathrm{~J}]$
$\mathrm{E}_{2}$ : Additional energy by cylinder thrust $\cdots \mathrm{F} \cdot \mathrm{L}[\mathrm{J}]$
$\mathrm{E}_{3}$ : Additional energy by load $\cdots \mathrm{m} \cdot \mathrm{g} \cdot \mathrm{L}[\mathrm{J}]$
m : Load mass [kg]
$v$ : Impact speed [m/s]
g : Gravity acceleration $9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
F : Cylinder thrust $\cdots=\frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{P}[\mathrm{N}]$
[D: cylinder bore (mm); P: operating air pressure (Mpa)] L : Absorbing stroke of shock absorber [m]
$\mathrm{E}^{\prime}$ : Total impact energy $\cdots[\mathrm{ft} \cdot \mathrm{lbf}]$
$\mathrm{E}^{\prime}$ : Kinetic energy $\cdots \frac{\mathrm{W}^{\prime} \cdot v^{\prime 2}}{2 \mathrm{~g}^{\prime}}[\mathrm{ft} \cdot \mathrm{lbf}]$
$\mathrm{E}^{\prime} 2$ : Additional energy by cylinder thrust $\cdots \mathrm{F}^{\prime} \cdot \mathrm{L}^{\prime}[\mathrm{ff} \cdot \mathrm{lbf}]$
$\mathrm{E}^{\prime}$ : Additional energy by load weight $\cdots \mathrm{W}^{\prime} \cdot \mathrm{L}^{\prime}$ ' $\left.\mathrm{ft} \cdot \mathrm{lbf}\right]$
W' : Load weight [lbf.]
$v^{\prime}$ : Impact speed [ft./sec.]
$\mathrm{g}^{\prime}$ : Gravity acceleration 32.2 [ $\mathrm{ft} . / \mathrm{sec} .^{2}$ ]
$\mathrm{F}^{\prime}:$ Cylinder thrust $\cdots=\frac{\pi}{4} \cdot \mathrm{D}^{\prime 2} \cdot \mathrm{P}^{\prime}[$ lbf. $]$
[D': cylinder bore [in.]; $\mathrm{P}^{\prime}$ : operating air pressure [psi.]] $\mathrm{L}^{\prime}$ : Absorbing stroke of shock absorber [ft.]


Note: Additional shock absorbers have this nut, but the nut must be removed before use.

| Model Code | F | L | U | AX | AY |
| :--- | :---: | :---: | :---: | :---: | :---: |
| KSHA6 $\times \mathbf{8 - E - X}$ | 10.5 | M10 $\times 1$ | 8.5 | 13.9 | 12 |
| KSHA7 $\times \mathbf{8 - G - X}$ | 12.5 | M12 $\times 1$ | 10.5 | 16.2 | 14 |

## Mounting

1. While any mounting direction of the WT slide table is allowed, the mounting surface should always be flat. Twisting or bending during mounting may disturb the accuracy and may also result in air leaks or improper operation.
2. Caution should be exercised that scratches or dents on the WT slide table's mounting surface may damage its flatness.
3. Take locking device or anti-looseness measures when shocks or vibrations might loosen the bolts.

Onstallation by using female threads on the body bottom

- Installation by using through holes on the body


Mounting bolt screw length (as a guide)

| Model | $\mathbf{N}$ <br> $\mathrm{mm}[\mathrm{in]}$. | $\mathbf{T}$ <br> $\mathrm{mm}[\mathrm{in}]$. | $\mathbf{S}$ <br> $\mathrm{mm}[\mathrm{in}]$. | Mounting bolt |
| :---: | :---: | :---: | :---: | :---: |
| AWT16 | $\mathrm{L}+9[0.35]$ | $14[0.55]$ | $25[0.98]$ | $\mathrm{M} 6 \times 1$ |
| AWT20 | $\mathrm{L}+12[0.47]$ | $16[0.63]$ | $30[1.18]$ | $\mathrm{M} 8 \times 1.25$ |

## Mounting bolt tightening torque (as a guide)

| Model | Tightening torque <br> N.cm [in•lbf] | Mounting bolt |
| :---: | :---: | :---: |
| AWT16 | $800[71]$ | M6 $\times 1$ |
| AWT20 | $2000[177]$ | M8 $\times 1.25$ |

[^1]
## Stroke adjustment

The stroke of the WT slide table can be adjusted by changing the mounting position of the stopper bolt; up to -32 mm [-1.26in.] on one side, $-64 \mathrm{~mm}[-2.52 \mathrm{in}$.] for both sides with the AWT16, and up to $-29 \mathrm{~mm}[-1.14 \mathrm{in}$.$] on one side, -58 \mathrm{~mm}[-2.28 \mathrm{in}$.$] for both sides with the$ AWT20.

- Stroke adjustment
up to $-13 \mathrm{~mm}[-0.51 \mathrm{in}$. $]$ on one side with the AWT16
up to $-10 \mathrm{~mm}[-0.39 \mathrm{in}$.] on one side with the AWT20
(1) Loosen the hexagon nut which is securing the stopper bolt.
(2) Adjust the position of the stopper bolt by turning the minus groove of the stopper bolt with a flat-blade screw driver.
(3) Tighten and secure the hexagon nut when the position is determined.
- Stroke adjustment
$-13 \sim-32 \mathrm{~mm}[-0.51 \sim-1.26 \mathrm{in}$.$] range on one side with the AWT16$
$-10 \sim-29 \mathrm{~mm}[-0.39 \sim-1.14 \mathrm{in}$.$] range on one side with the AWT20$
(1) Remove the mounting bolt which is securing the block.
(2) Move the block from ' $A$ ' to ' $B$ ' and secure it by tightening the mounting bolt.
(3) Then, finely adjust the stopper bolt by using the method described above: "stroke adjustment up to $-13 \mathrm{~mm}[-0.51 \mathrm{in}$.] on one side with the AWT16 and up to $-10 \mathrm{~mm}[-0.39 \mathrm{in}$.] on one side with the AWT20."


Tightening torque of the bolt and nut

| Parts | Tightening torque <br> $\mathrm{N} \cdot \mathrm{cm}[\mathrm{in} \cdot \mathrm{lbf}]$ | Width across flats <br> $\mathrm{mm}[\mathrm{in}]$. |
| :---: | :---: | :---: |
| Block mounting bolt (AWT16) | $500[44]$ | $4[0.157]$ |
| Block mounting bolt (AWT20) | $800[71]$ | $5[0.197]$ |
| Hexagon nut | $800[71]$ | $10[0.394]$ |
| Remark: Rerter |  |  |

Remark: Refer to the above values when tightening the bolts.

Caution: Use the WT slide table with the specified stroke or below.
Moreover, do not remove the stopper bolt. Using more than the specified stroke or with the stopper bolt removed causes damage.


## WT SLIDE TABLES

## Specifications

| Item | Model | AWT16 | AWT20 |
| :---: | :---: | :---: | :---: |
| Bore size | mm [in.] | 16 [0.630] | 20 [0.787] |
| Operation type |  | Double acting type |  |
| Media |  | Air |  |
| Operating pressure range | MPa [psi.] | $0.15 \sim 0.7$ [22~102] |  |
| Proof pressure | MPa [psi.] | 1.03 [149] |  |
| Operating temperature range | ${ }^{\circ} \mathrm{C}$ [ ${ }^{\text {F }}$ ] | 0~60 [32~140] |  |
| Operating speed range | $\mathrm{mm} / \mathrm{s}$ [in./sec.] | 100~500 [3.9~19.7] |  |
| Cushion |  | Shock absorber (Standard equipment) |  |
| Lubrication | Cylinder portion | Not required (If lubrication is required, use Turbine Oil Class 1 [ISO VG32] or equivalent.) |  |
|  | Guide portion | Required (Lithium soap-based grease) ${ }^{\text {Note }}$ |  |
| Stroke adjusting range | mm [in.] | $-64 \sim 0[-2.52 \sim 0]$ (To the specified stroke, one side MAX. -32 [ -1.26 ], both sides MAX. -64 [-2.52]) | $-58 \sim 0[-2.28 \sim 0]$ (To the specified stroke, one side MAX. -29 [ -1.14$]$, both sides MAX. $-58[-2.28]$ ) |
| Repeatability | mm [in.] | \pm 0.05 [ $\pm 0.002]$ |  |
| Maximum load capacity | N [lbf.] | 150 [33.7] | 200 [45.0] |
| Allowable static load | N [lbf.] | 6000 [1349] | 7000 [1574] |
| Port size | Rc | 1/8 |  |

Note: Apply lithium soap-based grease on the raceway surface of the track rail every 6 months or every 300 km [186mi.] of traveling distance.

Shock Absorber Specifications

| Item Model | KSHA6 $\times 8$-E-X |  | KSHA7 $\times 8$-G-X |
| :---: | :---: | :---: | :---: |
| Applicable type | AWT16 |  | AWT20 |
| Maximum absorption J [ft-lbf] | 2.0 [1.5] |  | 3.9 [2.9] |
| Absorbing stroke mm [in.] |  | 8 [0.315] |  |
| Maximum impact speed $\mathrm{mm} / \mathrm{s}$ [in./sec.] |  | 1000 [39.4] |  |
| Maximum operating frequency cycle/min |  | 30 |  |
| Spring return force (When retracted) N [lbf.] |  | 9.8 [2.2] |  |
| Angle variation |  | $3^{\circ}$ or less |  |
| Operating temperature range ${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$ |  | $0 \sim 60[32 \sim 140]$ |  |

Note: The life of the shock absorber may vary from the WT slide table, depending on its operating conditions.

## Bore Size and Stroke

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Bore size | Standard strokes | Maximum available stroke |  |
| $\mathbf{1 6}$ | $50,100,150,200$ | 200 |  |
| 20 |  | 2 |  |

## Mass

| Model | Stroke mm |  |  |  | Additional mass of sensor switch Note |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 50 | 100 | 150 | 200 | ZE $\square \square \square \mathbf{A}$ | ZE $\square \square \square \mathrm{B}$ |
| AWT16 | 1.9 [4.2] | 2.2 [4.9] | 2.8 [6.2] | 3.4 [7.5] | 0.015 [0.033] | 0.035 [0.077] |
| AWT20 | 2.75 [6.06] | 3.1 [6.8] | 4.0 [8.8] | 4.8 [10.6] |  |  |

[^2]

## Additional parts

## －Shock absorber

KSHA6 $\times 8$－E－X（For AWT16）
KSHA7 $\times 8$－G－X（For AWT20）

## Sensor switch

For the order code of sensor switches，see p． 1028.

## Cylinder Thrust

Select a suitable cylinder bore size considering the load and air pressure to obtain the required thrust．
Since the figures in the table are calculated values，select a bore size that results in a load ratio（load ratio $=\frac{\text { Load }}{\text { Calculated value }}$ ）of $70 \%$
or less（ $50 \%$ or less for high speed application）．

| Bore size mm ［in．］ | Rod diameter mm［in．］ | Operation |  | Pressure area $\mathrm{mm}^{2}$［in．${ }^{2}$ ］ | Air pressure MPa［psi．］ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 0.2 ［29］ | 0.3 ［44］ | 0.4 ［58］ | 0.5 ［73］ | 0.6 ［87］ | 0.7 ［102］ |
| 16 ［0．630］ | 8 ［0．315］ | Double acting type | Push side |  | 201.0 ［0．3116］ | 40.2 ［9．04］ | 60.3 ［13．56］ | 80.4 ［18．07］ | 100.5 ［22．59］ | 120.6 ［27．11］ | 140.7 ［31．63］ |
|  |  |  | Pull side | 150.0 ［0．2325］ | 30.1 ［6．77］ | 45.2 ［10．16］ | 60.3 ［13．56］ | 75.4 ［16．95］ | 90.4 ［20．32］ | 105.5 ［23．72］ |
| 20 ［0．787］ | 10 ［0．394］ | Double acting type | Push side | 314.0 ［0．4867］ | 62.8 ［14．12］ | 94.2 ［21．18］ | 125.6 ［28．23］ | 157.0 ［35．29］ | 188.4 ［42．35］ | 219.8 ［49．41］ |
|  |  |  | Pull side | 235.5 ［0．3650］ | 47.1 ［10．59］ | 70.7 ［15．89］ | 94.2 ［21．18］ | 117.8 ［26．48］ | 141.3 ［31．76］ | 164.9 ［37．07］ |

## Connection Port and Moving Direction of the Table


－The table moves in the direction of $\mathbf{R}$ when air is supplied to N port．
－The table moves in the direction of $\mathbf{L}$ when air is supplied to P port．


- AWT16 $\times$ Stroke




| Stroke | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 220 | 85 | 160 | 190 | 150 |
| 100 | 270 | 85 | 160 | 240 | 200 |
| 150 | 370 | 110 | 210 | 340 | 300 |
| 200 | 470 | 135 | 260 | 440 | 400 |

AWT20 $\times$ Stroke
AD


| Stroke | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 230 | 90 | 170 | 200 | 160 |
| 100 | 280 | 90 | 170 | 250 | 210 |
| 150 | 380 | 115 | 220 | 350 | 310 |
| 200 | 480 | 140 | 270 | 450 | 410 |

## SENSOR SWITCHES

Solid State Type, Reed Switch Type

Order Codes


Sensor switch

| ZE135 - Solid state type | with indicator lamp |
| :--- | :--- |
| ZE235 - Solid state type | with indicator lamp |
| ZE101 - Reed switch type | without indicator lamp |
|  |  |
| ZE201 — Reed switch type | without indicator lamp |


| V~28V | Horizontal lead wire | 155 - Solid | p | DC4. | Horizontal lead |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DC10V~28V | Vertical lead wire | ZE255 - Solid state typ | indicator lamp | DC4.5V~28V | Vertical lead wire |
| $\begin{aligned} & \text { DC5V~28V } \\ & \text { AC85~115V } \end{aligned}$ | Horizontal lead wire | ZE102 - Reed switch type | with indicator lamp | AC85~115V | Horizontal lea |
| $\begin{aligned} & \text { DC5V~28V } \\ & \text { AC85~115V } \end{aligned}$ | Vertical lead wire | ZE202 - Reed switch | with indicator lamp | $\begin{aligned} & \text { DC10V~28V } \\ & \text { AC85~115V } \end{aligned}$ | Vertical lead wire |

## Minimum Cylinder Strokes When Using Sensor Switches

|  |  |  |  | mm [in. |
| :---: | :---: | :---: | :---: | :---: |
| Bore size | Solid state type |  | Reed switch type |  |
|  | 2 pcs. mounting | 1 pc . mounting | 2 pcs. mounting | 1 pc. mounting |
| 16 [0.630] | 10 | 5 | 10 | 10 |
| 20 [0.787] |  |  |  |  |

## Moving Sensor Switch



## Sensor Switch Operating Range, Response Differential, and Maximum Sensing Location

## -Operating range : $\ell$

The distance the piston travels in one direction, while the switch is in the ON position.

## -Response differential : C

The distance between the point where the piston turns the switch ON and the point where the switch is turned OFF as the piston travels in the opposite direction.

| Solid state type |  | mm [in.] |
| :--- | :---: | :---: |
| ItemBore size | $\mathbf{1 6 [ 0 . 6 3 0 ]}$ | $\mathbf{2 0 [ 0 . 7 8 7 ]}$ |
| Operating range: $\ell$ | $2 \sim 5[0.079 \sim 0.197]$ | $3.5 \sim 7.5[0.138 \sim 0.295]$ |
| Response differential:C | $1.0[0.039]$ or less |  |
| Maximum sensing location Note | $6[0.236]$ |  |

Remark: The above table shows reference values.
Note: This is the length measured from the switch's opposite end side to the lead wire

| Reed switch type |  | Bore size |
| :--- | :---: | :---: |
| Item | $\mathbf{1 6}[\mathbf{0 . 6 3 0}]$ | $\mathbf{2 0}[\mathbf{0 . 7 8 7 ]}]$ |
| Operating range: $\ell$ | $6.5 \sim 9[0.256 \sim 0.354]$ | $10 \sim 13[0.394 \sim 0.512]$ |
| Response differential:C | $1.5[0.059]$ or less |  |
| Maximum sensing location Note | $10[0.394]$ |  |
| Remark: The above table shows reference values. |  |  |



## Mounting Location of End of Stroke Detection Sensor Switch

When the sensor switch is mounted in the locations shown below (the figures in the tables are reference values), the magnet comes to the maximum sensing location of the sensor switch at the end of the stroke.


When Mounting WT Slide Tables with Sensor Switches in Close Proximity

When mounting WT slide tables with sensor switches in close proximity, install the WT slide tables so that they should not be below the values shown in the following tables.




[^0]:    $1 \mathrm{~mm} / \mathrm{s}=0.0394 \mathrm{in} . / \mathrm{sec}$.
    $1 \mathrm{~kg}=2.205 \mathrm{lb}$.

[^1]:    Remark: Refer to the above values when tightening the bolts.

[^2]:    Note: Sensor switch types A and B show the lead wire lengths.
    A:1000mm [39in.] B:3000mm [118in.]

